ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comprehensive study of the total X-ray emission from the colliding galaxy pair NGC2207/IC2163, based on Chandra, Spitzer, and GALEX data. We detect 28 ultra-luminous X-ray sources (ULXs), 7 of which were not detected previously due to X- ray variability. Twelve sources show significant long-term variability, with no correlated spectral changes. Seven sources are transient candidates. One ULX coincides with an extremely blue star cluster (B-V = -0.7). We confirm that the global relation between the number and luminosity of ULXs and the integrated star formation rate (SFR) of the host galaxy also holds on local scales. We investigate the effects of dust extinction and/or age on the X-ray binary (XRB) population on sub-galactic scales. The distributions of Nx and Lx are peaked at L(IR)/L(NUV)~1, which may be associated with an age of ~10 Myr for the underlying stellar population. We find that ~1/3 of the XRBs are located in close proximity to young star complexes. The luminosity function of the X-ray binaries is consistent with that typical for high-mass X-ray binaries, and appears unaffected by variability. We disentangle and compare the X-ray diffuse spectrum with that of the bright XRBs. The hot interstellar medium dominates the diffuse X-ray emission at E<1 keV, has a temperature kT=0.28 (+0.05/-0.04) keV and intrinsic 0.5-2 keV luminosity of 7.9e+40 erg/s, a factor of ~2.3 higher than the average thermal luminosity produced per unit SFR in local star-forming galaxies. The total X-ray output of NGC2207/IC2163 is 1.5e+41 erg/s, and the corresponding total integrated SFR is 23.7 Msol/yr.
157 - S. Mineo 2013
We investigate the radial distribution of the low-mass X-ray binary (LMXB) population in the elliptical galaxy NGC 4649, using Chandra and Hubble data to separate the field and globular cluster (GC) populations. GCs with LMXBs have the same radial di stribution as the parent red and blue GCs. The radial profile of field LMXBs follows the V-band profile within the D25 of NGC 4649. Using the spatial information provided by our data, we find that the global galaxy-wide relations between cumulative number and luminosity of LMXBs and the integrated stellar mass hold on local scales within D25. An excess of field LMXBs with respect to the V-light is observed in the galaxys outskirt, which may be partially due to unidentified GC sources or to a rejuvenated field LMXB population caused by past merging interactions.
221 - S. Mineo 2013
The colliding galaxy pair NGC 2207/IC 2163, at a distance of ~39 Mpc, was observed with Chandra, and an analysis reveals 28 well resolved X-ray sources, including 21 ultraluminous X-ray sources (ULXs) with Lx > 10^39 erg/s, as well as the nucleus of NGC 2207. The number of ULXs is comparable with the largest numbers of ULXs per unit mass in any galaxy yet reported. In this paper we report on these sources, and quantify how their locations correlate with the local star formation rates seen in spatially-resolved star formation rate density images that we have constructed using combinations of Galex FUV and Spitzer 24um images. We show that the numbers of ULXs are strongly correlated with the local star formation rate densities surrounding the sources, but that the luminosities of these sources are not strongly correlated with star formation rate density.
48 - S. Mineo 2012
We investigate the relation between total X-ray emission from star-forming galaxies and their star formation activity. Using nearby late-type galaxies and ULIRGs from Paper I and star-forming galaxies from Chandra Deep Fields, we construct a sample o f 66 galaxies spanning the redshift range z~0-1.3 and the star-formation rate (SFR) range ~0.1-10^3 M_sun/yr. In agreement with previous results, we find that the Lx-SFR relation is consistent with a linear law both at z=0 and for the z=0.1-1.3 CDF galaxies, within the statistical accuracy of ~0.1 in the slope of the Lx-SFR relation. For the total sample, we find a linear scaling relation Lx/SFR~(4.0pm 0.4)x10^{39}(erg/s)/(Msun/yr), with a scatter of ~0.4 dex. About ~2/3 of the 0.5-8 keV luminosity generated per unit SFR is expected to be due to HMXBs. We find no statistically significant trends in the mean Lx/SFR ratio with the redshift or star formation rate and constrain the amplitude of its variations by <0.1-0.2 dex. These properties make X-ray observations a powerful tool to measure the star formation rate in normal star-forming galaxies that dominate the source counts at faint fluxes.
We study the emission from the hot interstellar medium in a sample of nearby late type galaxies defined in Paper I. Our sample covers a broad range of star formation rates, from ~0.1 Msun/yr to ~17 Msun/yr and stellar masses, from ~3x10^8 Msun to ~6x 10^10 Msun. We take special care of systematic effects and contamination from bright and faint compact sources. We find that in all galaxies at least one optically thin thermal emission component is present in the unresolved emission, with the average temperature of <kT>= 0.24 keV. In about ~1/3 of galaxies, a second, higher temperature component is required, with the <kT>= 0.71 keV. Although statistically significant variations in temperature between galaxies are present, we did not find any meaningful trends with the stellar mass or star formation rate of the host galaxy. The apparent luminosity of the diffuse emission in the 0.5-2 keV band linearly correlates with the star formation rate with the scale factor of Lx/SFRapprox 8.3x10^38 erg/s per Msun/yr, of which in average ~30-40% is likely produced by faint compact sources of various types. We attempt to estimate the bolometric luminosity of the gas and and obtained results differing by an order of magnitude, log(Lbol/SFR)sim39-40, depending on whether intrinsic absorption in star-forming galaxies was allowed or not. Our theoretically most accurate, but in practice the most model dependent result for the intrinsic bolometric luminosity of ISM is Lbol/SFRsim 1.5x10^40 erg/s per Msun/yr. Assuming that core collapse supernovae are the main source of energy, it implies that epsilon_SNsim5x10^-2 (E_SN/10^51)^-1 of mechanical energy of supernovae is converted into thermal energy of ISM.
261 - S. Mineo 2011
Based on a homogeneous set of X-ray, infrared and ultraviolet observations from Chandra, Spitzer, GALEX and 2MASS archives, we study populations of high-mass X-ray binaries (HMXBs) in a sample of 29 nearby star-forming galaxies and their relation wit h the star formation rate (SFR). In agreement with previous results, we find that HMXBs are a good tracer of the recent star formation activity in the host galaxy and their collective luminosity and number scale with the SFR, in particular, Lx~2.6 10^{39} SFR. However, the scaling relations still bear a rather large dispersion of ~0.4 dex, which we believe is of a physical origin. We present the catalog of 1057 X-ray sources detected within the $D25$ ellipse for galaxies of our sample and construct the average X-ray luminosity function (XLF) of HMXBs with substantially improved statistical accuracy and better control of systematic effects than achieved in previous studies. The XLF follows a power law with slope of 1.6 in the logLx~35-40 luminosity range with a moderately significant evidence for a break or cut-off at Lx~10^{40} erg/s. As before, we did not find any features at the Eddington limit for a neutron star or a stellar mass black hole. We discuss implications of our results for the theory of binary evolution. In particular we estimate the fraction of compact objects that once upon their lifetime experienced an X-ray active phase powered by accretion from a high mass companion and obtain a rather large number, fx~0.2 (0.1 Myr/tau_x) (tau_x is the life time of the X-ray active phase). This is ~4 orders of magnitude more frequent than in LMXBs. We also derive constrains on the mass distribution of the secondary star in HMXBs.
40 - Stefano Mineo 2010
We study the relation between the X-ray luminosity of compact sources and the SFR of the host galaxy. Our sample includes 38 galaxies for which a uniform set of X-ray, infra-red and ultraviolet data from Chandra, Spitzer and GALEX has been collected. Our primary goals are (i) to obtain a more accurate calibration of the Lx-SFR relation and (ii) to understand the origin of the dispersion in the Lx-SFR relation observed in previous studies. Preliminary results of this project are reported below.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا