ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - S. Cavazzani , V. Zitelli 2012
In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous pap ers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered), and covered. Additionally, for the clear nights, we have evaluated the amount of satellite stable nights which correspond to the amount of ground based photometric nights, and the clear nights corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico; Izana, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentine; San Antonio de Los Cobres (SAC), Argentine). We have obtained, from the two years considered, a mean amount of cloud free nights of 68.6% at Izana, 76.0% at SPM, 70.6% at Leoncito and 70.0% at SAC. We have evaluated, among the cloud free nights, an amount of stable nights of 62.6% at Izana, 69.6% at SPM, 64.9% at Leoncito, and 59.7% at SAC.
In this paper we calculate the delay of the arrival times of visible photons on the focal plane of a telescope and its fluctuations as function of local atmospheric conditions (temperature, pressure, chemical composition, seeing values) and telescope diameter. The aim is to provide a model for delay and its fluctuations accurate to the picosecond level, as required by several very high time resolution astrophysical applications, such as comparison of radio and optical data on Giant Radio Bursts from optical pulsars, and Hanbury Brown Twiss Intensity Interferometry with Cerenkov light detectors. The results here presented have been calculated for the ESO telescopes in Chile (NTT, VLT, E-ELT), but the model can be easily applied to other sites and telescope diameters. Finally, we describe a theoretical mathematical model for calculating the Fried radius through the study of delay time fluctuations.
Comparing the number of clear nights (cloud free) available for astronomical observations is a critical task because it should be based on homogeneous methodologies. Current data are mainly based on different judgements based on observer logbooks or on different instruments. In this paper we present a new homogeneous methodology on very different astronomical sites for modern optical astronomy, in order to quantify the available night time fraction. The data are extracted from night time GOES12 satellite infrared images and compared with ground based conditions when available. In this analysis we introduce a wider average matrix and 3-Bands correlation in order to reduce the noise and to distinguish between clear and stable nights. Temporal data are used for the classification. In the time interval 2007-2008 we found that the percentage of the satellite clear nights is 88% at Paranal, 76% at La Silla, 72.5% at La Palma, 59% at Mt. Graham and 86.5% at Tolonchar. The correlation analysis of the three GOES12 infrared bands B3, B4 and B6 indicates that the fraction of the stable nights is lower by 2% to 20% depending on the site.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا