ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnostic diagrams of forbidden lines have been a useful tool for observers in astrophysics for many decades now. They are used to obtain information on the basic physical properties of thin gaseous nebulae. Some diagnostic diagrams are in wavelengt h domains which were difficult to take either due to missing wavelength coverage or low resolution of older spectrographs. Furthermore, most of the diagrams were calculated using just the species involved as a single atom gas, although several are affected by well-known fluorescence mechanisms as well. Additionally the atomic data have improved up to the present time. Aim of this work was a recalculation of well-known, but also of sparsely used, unnoted diagnostics diagrams. The new diagrams provide observers with modern, easy-to-use recipes to determine electron temperature and densities. The new diagnostic diagrams are calculated using large grids of parameter space in the photoionization code CLOUDY. For a given basic parameter (e.g. electron density or temperature) the solutions with cooling-heating-equilibrium are chosen to derive the diagnostic diagrams. Empirical numerical functions are fitted to provide formulas usable in e.g. data reduction pipelines. The resulting diagrams differ significantly from those used up to now and will improve the thermodynamic calculations. To our knowledge, for the first time detailed directly applicable fit formulas are given, leading to electron temperature or density from the line ratios.
A standard planetary nebula stays more than 10 000 years in the state of a photoionized nebula. As long as the timescales of the most important ionizing processes are much smaller, the ionization state can be characterized by a static photoionization model and simulated with codes like CLOUDY (Ferland et al. 1998). When the star exhibits a late Helium flash, however, its ionizing flux stops within a very short period. The star then re-appears from itsopaque shell after a few years (or centuries) as a cold giant star without any hard ionizing photons. Describing the physics of such behavior requires a fully time-dependent radiative transfer model. Pollacco (1999), Kerber et al. (1999) and Lechner & Kimeswenger (2004) used data of the old nebulae around V605 Aql and V4334 Sgr to derive a model of the pre-outburst state of the CSPN in a static model. Their argument was the long recombination time scale for such thin media. With regard to these models Schoenberner (2008) critically raised the question whether a significant change in the ionization state (and thus the spectrum) has to be expected after a time of up to 80 years, and whether static models are applicable at all.
183 - S. Kimeswenger 2008
While in the past spheroidicity was assumed, and still is used in modeling of most nebulae, we know now that only a small number of planetary nebulae (PNe) are really spherical or at least nearly round. Round planetary nebulae are the minority of obj ects. In case of those objects that underwent a very late helium flash (called VLTP or born-again PNe) it seems to be different. The first, hydrogen rich PN, is more or less round. The ejecta from the VLTP event is extremely asymmetrically. Angular momentum is mostly assumed to be the main reason for the asymmetry in PNe. Thus we have to find processes either changing their behavior within a few hundred to a few thousands of years or change their properties dramatically due to the variation of the abundance. They most likely have a strong link or dependency with the abundance of the ejecta.
76 - S. Kimeswenger 2008
While in the past spherodicity was assumed, and still is used in modeling of most nebulae, we know now that only a small number of planetary nebulae (PNe) are really spherical or at least nearly round. Round planetary nebulae are the minority of obje cts. In the case of those objects that underwent a very late helium flash (called VLTP objects or ``born-again PNe) it seems to be different. The first, hydrogen-rich PN, is more or less round. The ejecta from the VLTP event, in contrast, are extremely asymmetrical.
Typical astronomical spectrographs have a resolution ranging between a few hundred to 200.000. Deconvolution and correlation techniques are being employed with a significance down to 1/1000 th of a pixel. HeAr and ThAr lamps are usually used for cali bration in low and high resolution spectroscopy, respectively. Unfortunately, the emitted lines typically cover only a small fraction of the spectrometers spectral range. Furthermore, their exact position depends strongly on environmental conditions. A problem is the strong intensity variation between different (intensity ratios {>300). In addition, the brightness of the lamps is insufficient to illuminate a spectrograph via an integrating sphere, which in turn is important to calibrate a long-slit spectrograph, as this is the only way to assure a uniform illumination of the spectrograph pupil. Laboratory precision laser spectroscopy has experienced a major advance with the development of optical frequency combs generated by pulsed femto-second lasers. These lasers emit a broad spectrum (several hundred nanometers in the visible and near infra-red) of equally-spaced comb lines with almost uniform intensity (intensity ratios typically <10). Self-referencing of the laser establishes a precise ruler in frequency space that can be stabilized to the 10e-18 uncertainty level, reaching absolute frequency inaccuracies at the 10e-12 level per day when using the Global Positioning Systems (GPS) time signal as the reference. The exploration of the merits of this new technology holds the promise for broad-band, highly accurate and reproducible calibration required for reliable operation of current and next generation astronomic spectrometers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا