ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the components of the cosmic web are sheets, which are commonly referred to as Zeldovich pancakes. These are structures which have only collapsed along one dimension, as opposed to filaments or galaxies and cluster, which have collapsed along two or three dimensions. These pancakes have recently received renewed interest, since they have been shown to be useful tools for an independent method to determine galaxy cluster masses. We consider sheet-like structures resulting from cosmological simulations, which were previously used to establish the cluster mass determination method, and we show through their level of equilibration, that these structures have indeed only collapsed along the one dimension. We also extract the density profiles of these pancake, which agrees acceptably well with theoretical expectations. We derive the observable velocity distribution function (VDF) analytically by generalizing the Eddington method to one dimension, and we compare with the distribution function from the numerical simulation.
All dark matter structures appear to follow a set of universalities, such as phase-space density or velocity anisotropy profiles, however, the origin of these universalities remains a mystery. Any equilibrated dark matter structure can be fully descr ibed by two functions, namely the radial and the tangential velocity distribution functions (VDF), and when we will understand these two then we will understand all the observed universalities. Here we demonstrate that if we know the radial VDF, then we can derive and understand the tangential VDF. This is based on simple dynamical arguments about properties of collisionless systems. We use a range of controlled numerical simulations to demonstrate the accuracy of this result. We therefore boil the question of the dark matter structural properties down to understanding the radial VDF.
111 - Steen H. Hansen 2012
When dark matter structures form and equilibrate they have to release a significant amount of energy in order to obey the virial theorem. Since dark matter is believed to be unable to radiate, this implies that some of the accreted dark matter partic les must be ejected with high velocities. These ejected particles may then later hit other cosmological structures and deposit their momentum within these structures. This induces a pressure between the cosmological structures which opposes the effect of gravity and may therefore mimic a cosmological constant. We estimate the magnitude of this effect and find that it may be as large as the observed accelerated expansion. Our estimate is accurate only within a few orders of magnitude. It is therefore important to make a much more careful calculation of this redshift dependent effect, before beginning to interpret the observed accelerated expansion as a time dependent generalization of a cosmological constant.
Galaxy clusters provide us with important information about the cosmology of our universe. Observations of the X-ray radiation or of the SZ effect allow us to measure the density and temperature of the hot intergalactic medium between the galaxies in a cluster, which then allow us to calculate the total mass of the galaxy cluster. However, no simple connection between the density and the temperature profiles has been identified. Here we use controlled high-resolution numerical simulations to identify a relation between the density and temperature of the gas in equilibrated galaxy clusters. We demonstrate that the temperature-density relation is a real attractor, by showing that a wide range of equilibrated structures all move towards the attractor when perturbed and subsequently allowed to relax. For structures which have undergone sufficient perturbations for this connection to hold, one can therefore extract the mass profile directly from the X-ray intensity profile.
The temperature profile of hot gas in galaxies and galaxy clusters is largely determined by the depth of the total gravitational potential and thereby by the dark matter (DM) distribution. We use high-resolution hydrodynamical simulations of galaxy f ormation to derive a surprisingly simple relation between the gas temperature and DM properties. We show that this relation holds not just for galaxy clusters but also for equilibrated and relaxed galaxies at radii beyond the central stellar-dominated region of typically a few kpc. It is then clarified how a measurement of the temperature and density of the hot gas component can lead to an indirect measurement of the DM velocity anisotropy in galaxies. We also study the temperature relation for galaxy clusters in the presence of self-regulated, recurrent active galactic nuclei (AGN), and demonstrate that this temperature relation even holds outside the inner region of 30 kpc in clusters with an active AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا