ترغب بنشر مسار تعليمي؟ اضغط هنا

Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been t hought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.
152 - S. Recchi IfA , Vienna 2014
Standard analytical chemical evolution modelling of galaxies has been assuming the stellar initial mass function (IMF) to be invariant and fully sampled allowing fractions of massive stars to contribute even in dwarf galaxies with very low star forma tion rates (SFRs). Recent observations show the integrated galactic initial mass function (IGIMF) of stars, i.e. the galaxy-wide IMF, to become systematically top-heavy with increasing SFR. This has been predicted by the IGIMF theory, which is here used to develop the analytical theory of the chemical evolution of galaxies. This theory is non-linear and requires the iterative solution of implicit integral equations due to the dependence of the IGIMF on the metallicity and on the SFR. It is shown that the mass-metallicity relation of galaxies emerges naturally, although at low masses the theoretical predictions overestimate the observations by 0.3--0.4 dex. A good agreement with the observation can be obtained only if gas flows are taken into account. In particular, we are able to reproduce the mass--metallicity relation observed by Lee et al. (2006) with modest amounts of infall and with an outflow rate which decreases as a function of the galactic mass. The outflow rates required to fit the data are considerably smaller than required in models with invariant IMFs.
138 - S. Recchi IfA 2014
The physical properties of the so-called Ostriker isothermal, non-rotating filament have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, such static picture seems to contrast with the more dynamical state observed in different filaments. In order to explore the physical conditions of filaments under realistic conditions, in this work we theoretically investigate how the equilibrium structure of a filament changes in a rotating configuration. To do so, we solve the hydrostatic equilibrium equation assuming both uniform and differential rotations independently. We obtain a new set of equilibrium solutions for rotating and pressure truncated filaments. These new equilibrium solutions are found to present both radial and projected column density profiles shallower than their Ostriker-like counterparts. Moreover, and for rotational periods similar to those found in the observations, the centrifugal forces present in these filaments are also able to sustain large amounts of mass (larger than the mass attained by the Ostriker filament) without being necessary unstable. Our results indicate that further analysis on the physical state of star-forming filaments should take into account rotational effects as stabilizing agents against gravity
84 - S. Recchi 2013
In this review I give a summary of the state-of-the-art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions; (ii) the equa tions to solve; (iii) the star formation process in galaxies; (iv) the initial mass function; (v) the chemical feedback; (vi) the mechanical feedback; (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant for the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.
The physical properties of the so-called Ostriker isothermal filament (Ostriker 1964) have been classically used as benchmark to interpret the stability of the filaments observed in nearby clouds. However, recent continuum studies have shown that the internal structure of the filaments depart from the isothermality, typically exhibiting radially increasing temperature gradients. The presence of internal temperature gradients within filaments suggests that the equilibrium configuration of these objects should be therefore revisited. The main goal of this work is to theoretically explore how the equilibrium structure of a filament changes in a non-isothermal configuration. We solve the hydrostatic equilibrium equation assuming temperature gradients similar to those derived from observations. We obtain a new set of equilibrium solutions for non-isothermal filaments with both linear and asymptotically constant temperature gradients. Our results show that, for sufficiently large internal temperature gradients, a non-isothermal filament could present significantly larger masses per unit length and shallower density profiles than the isothermal filament without collapsing by its own gravity. We conclude that filaments can reach an equilibrium configuration under non-isothermal conditions. Detailed studies of both the internal mass distribution and temperature gradients within filaments are then needed in order to judge the physical state of filaments.
55 - S. Recchi , G. Hensler 2013
Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies, due to their shallower potential wells, are assumed to be more vulnerable to this phenomenon. Metal loss through galactic winds is also commonly invoked to explain the low metal content of dwarf galaxies. Our main aim in this paper is to show that galactic mass cannot be the only parameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simulations of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to loose metals more easily than roundish ones. Consequently, also the final metallicities attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly produced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shallower potential wells) more easily develop large-scale outflows, therefore the fraction of lost metals tends to be higher.
It is well established that the [alpha/Fe] ratios in elliptical galaxies increase with galaxy mass. This relation holds also for early-type dwarf galaxies, although it seems to steepen at low masses. The [alpha/Fe] vs. mass relation can be explained assuming that smaller galaxies form over longer timescales (downsizing), allowing a larger amount of Fe (mostly produced by long-living Type Ia Supernovae) to be released and incorporated into newly forming stars. Another way to obtain the same result is by using a flatter initial mass function (IMF) in large galaxies, increasing in this way the number of Type II Supernovae and therefore the production rate of alpha-elements. The integrated galactic initial mass function (IGIMF) theory predicts that the higher the star formation rate, the flatter the IMF. We have checked, by means of semi-analytical calculations, that the IGIMF theory, combined with the downsizing effect (i.e. the shorter duration of the star formation in larger galaxies), well reproduces the observed [alpha/Fe] vs. mass relation. In particular, we show a steepening of this relation in dwarf galaxies, in accordance with the available observations.
Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.
87 - S. Recchi , G. Hensler 2009
We study the effects of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies, in particular focusing on two model galaxies similar to IZw18 and NGC1569. We consider both scenarios, clouds put at the beginning of the simulation an d continuously created infalling ones. Due to dynamical processes and thermal evaporation, the clouds survive only a few tens of Myr, but during this time they act as an additional cooling agent and the internal energy of cloudy models is typically reduced by 20 - 40% in comparison with models without clouds. The clouds delay the development of large-scale outflows, therefore helping to retain a larger amount of gas inside the galaxy. However, especially in models with continuous creation of infalling clouds, their bullet effect can pierce the expanding supershell and create holes through which the superbubble can vent freshly produced metals. Moreover, assuming a pristine chemical composition for the clouds, their interaction with the superbubble dilutes the gas, reducing the metallicity (by up to ~ 0.4 dex) with respect to the one attained by diffuse models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا