ترغب بنشر مسار تعليمي؟ اضغط هنا

The intermediate results of the ongoing study of deep samples of ~200 galaxies residing in nearby voids, are presented. Their properties are probed via optical spectroscopy, ugri surface photometry, and HI 21-cm line measurements, with emphasis on th eir evolutionary status. We derive directly the hydrogen mass M(HI), the ratio M(HI)/L_B and the evolutionary parameter gas-phase O/H. Their luminosities and integrated colours are used to derive stellar mass M(*) and the second evolutionary parameter -- gas mass-fraction f_g. The colours of the outer parts, typically representative of the galaxy oldest stellar population, are used to estimate the upper limits on time since the beginning of the main SF episode. We compare properties of void galaxies with those of the similar late-type galaxies in denser environments. Most of void galaxies show smaller O/H for their luminosity, in average by ~30%, indicating slower evolution. Besides, the fraction of ~10% of the whole void sample or ~30% of the least luminous void LSB dwarfs show the oxygen deficiency by a factor of 2--5. The majority of this group appear very gas-rich, with f_g ~(95-99)%, while their outer parts appear rather blue, indicating the time of onset of the main star-formation episode of less than 1-4 Gyr. Such unevolved LSBD galaxies appear not rare among the smallest void objects, but turned out practically missed to date due to the strong observational selection effects. Our results evidense for unusual evolutionary properties of the sizable fraction of void galaxies, and thus, pose the task of better modelling of dwarf galaxy formation and evolution in voids.
SDSS J0015+0104 is the lowest metallicity low surface brightness dwarf (LSBD) galaxy known. The oxygen abundance in its HII region SDSS J001520.70+010436.9 (at ~1.5 kpc from the galaxy centre) is 12+log(O/H)=7.07 (Guseva et al.). This galaxy, at the distance of 28.4 Mpc, appears to reside deeply in the volume devoid of luminous massive galaxies, known as the Eridanus void. SDSS J235437.29-000501.6 is another Eridanus void LSBD galaxy, with parameter 12+log(O/H)=7.36 (also Guseva et al.). We present the results of their HI observations with the Nancay Radio Telescope revealing their high ratios of M(HI)/L_B ~2.3. Based on the Sloan Digital Sky Survey images, we derived for both galaxies their radial surface brightness profiles and the main photometric parameters. Their colours and total magnitudes are used to estimate the galaxy stellar mass and ages. The related gas mass-fractions, f_g ~0.98 and ~0.97, and the extremely low metallicities (much lower than for their more typical counterparts with the same luminosity) indicate their unevolved status. We compare these Eridanus void LSBDs with several extreme LSBD galaxies residing in the nearby Lynx-Cancer void. Based on the combination of all their unusual properties, the two discussed LSBD galaxies are similar to the unusual LSBDs residing in the closer void. This finding presents additional evidence for the existence in voids of a4 figures, sizable fraction of low-mass unevolved galaxies. Their dedicated search might result in the substantial increase of the number of such objects in the local Universe and in the advancement of understanding their nature.
249 - S.A.Pustilnik 2011
(Abridged) We present the results of the complex study of the low surface brightness dwarf (LSBD) gas-rich galaxies J0723+3621, J0737+4724 and J0852+1350, which reside in the nearby Lynx-Cancer void. Their ratios M(HI)/L_B, according to HI data obtai ned with the NRT, are respectively ~3.9, ~2, ~2.6. For the two latter galaxies, we derived oxygen abundance corresponding to the value of 12+log(O/H) <~7.3, using spectra from the Russian 6m telescope and from the SDSS database. We found two additional blue LSB dwarfs, J0723+3622 and J0852+1351, which appear to be physical companions of J0723+3621 and J0852+1350 situated at the projected distances of ~12--13 kpc. The companion relative velocities, derived from the BTA spectra, are dV = +89 km/s and +30 km/s respectively. The geometry and the relative orientation of orbits and spins in these pairs indicate, respectively, prograde and polar encounters for J0723+3621 and J0852+1350. The NRT HI profiles of J0723+3621 and J0723+3622 indicate a sizable gas flow in this system. The SDSS u,g,r,i images of the five dwarfs are used to derive the photometric parameters and the exponential or Sersic disc model fits. For three of them, the (u-g),(g-r),(r-i) colours of the outer parts, being compared with the PEGASE evolutionary tracks, evidence for the dominance of the old stellar populations with ages of T ~(8-10)+-3 Gyr. For J0723+3622 and J0737+4724, the outer region colours appear rather blue, implying the ages of the oldest visible stars of T <~1-3 Gyr. The new LSB galaxies complement the list of the known most metal-poor and `unevolved dwarfs in this void, including DDO 68, SDSS J0926+3343 and others. This unique concentration of unevolved dwarf galaxies in a small cell of the nearby Universe implies a physical relationship between the slow galaxy evolution and the void-type global environment.
65 - S.A. Pustilnik 2011
In the framework of the study of the evolutionary status of galaxies in the nearby Lynx-Cancer void, we present the results of the SAO RAS 6-m telescope spectroscopy for 20 objects in this region. The principal faint line [OIII]4363A, used to determi ne the electron temperature and oxygen abundance (O/H) by the classical method, is clearly detected in only about 2/3 of the studied objects. For the remaining galaxies this line is either faint or undetected. To obtain the oxygen abundances in these galaxies we as well apply the semi-empirical method by Izotov and Thuan, and/or the empirical methods of Pilyugin et al., which are only employing the intensities of sufficiently strong lines. We also present our O/H measurements for 22 Lynx-Cancer void galaxies, for which the suitable Sloan Digital Sky Survey (SDSS) spectra are available. In total, we present the combined O/H data for 48 Lynx-Cancer void galaxies, including the data adopted from the literature and our own earlier results. We make a comparison of their locations on the (O/H)-M_B diagram with those of the dwarf galaxies of the Local Volume in the regions with denser environment. We infer that the majority of galaxies from this void on the average reveal an about 30% lower metallicity. In addition, a substantial fraction (not less than 10%) of the void dwarf galaxies have a much larger O/H deficiency (up to a factor of 5). Most of them belong to the tiny group of objects with the gas metallicity Z < Zo/20 or 12+log(O/H) <~7.35. The surface density of very metal-poor galaxies (Z < Zo/10} in this region of the sky is 2--2.5 times higher than that, derived from the emission-line galaxy samples in the Hamburg-SAO and the SDSS surveys. We discuss possible implications of these results for the galaxy evolution models.
The evolution of galaxies is influenced by the environment in which they reside. This effect should be strongest for the least-mass and -luminosity galaxies. To study dwarf galaxies in extremely low density environments we have compiled a deep catalo gue of dwarf galaxies in the nearby Lynx-Cancer void. This void hosts some of the most metal-poor dwarfs known to date. It borders the Local Volume at the negative supergalactic Z (SGZ) coordinates and has the size of more than 16 Mpc. With a distance to its centre of only 18 Mpc it is close enough to allow the search for the faintest dwarfs. Within the void 75 dwarf (-11.9 > M_B > -18.0) and 4 subluminous (-18.0 > M_B > -18.4) galaxies have been identified. We present the parameters of the void galaxies and give a detailed analysis of the completeness of the catalogue as a function of magnitude and surface brightness. The catalogue appears almost complete to M_B < -14 mag, but misses part of the fainter low surface brightness (LSB) face-on galaxies. This sample of void galaxies builds the basis of forthcoming observational studies that will give insight into the main stellar population, HI-mass-to-light ratio, metallicity and age for comparison with dwarfs in higher density regions. We briefly summarize the information on the unusual objects in the void and conclude that their concentration hints that voids are environments that are favourable for finding and studying unevolved dwarf galaxies.
101 - A.V. Moiseev SAO 2010
The study of ionized gas morphology and kinematics in nine eXtremely Metal-Deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the SAO 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12+log(O/H) < 7.65, or Zo/35 < Z < Zo/10) are believed to be the best proxies of `young low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allow us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced star formation. As a by-product of our observations, we obtained data for two LSB dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low SFR star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542.
We present the results of observations of the very low surface brightness (VLSB) dwarf galaxy SDSS J092609.45+334304.1 with extreme parameters which indicate its unevolved status. Namely, its value of O/H, derived as an average of that in two adjacen t HII regions at the NE edge of the disc, corresponds to the parameter 12+log(O/H)=7.12+-0.02, which is amongst two lowest known. The total HI flux measurement obtained with the Nancay Radio Telescope and the photometric results imply that the galaxy ratio M(HI)/L_B ~3.0, is among the top known in the Local Volume. The galaxy is situated in the region of a nearby underdense region known as the Lynx-Cancer void, where other, unevolved galaxies, including DDO 68, HS 0832+3542 and SAO 0822+3545, are known to be present. The total mass of this almost edge-on VLSB galaxy is ~8.3 times larger than its baryonic mass, implying the dynamical dominance of Dark Matter (DM) halo. The (u-g), (g-r) colours of outer parts of this galaxy are consistent with the ages of its main stellar population of 1--3 Gyr. Thanks to the galaxy isolation, the small effect of current or recent star formation (SF), its proximity and rather large HI flux (~2.5 Jy km/s), this VLSB dwarf is a good laboratory for the detailed study of DM halo properties through HI kinematics and the star formation processes in very metal-poor low surface density environment. This finding, along with the discovery of other unusual dwarf galaxies in this void, provides evidence for the relation between galaxy evolution and its very low-density environment for the baryonic mass range of 10^{8} to 10^{9} Mo. This relation seems to be consistent with that expected in the LambdaCDM models of galaxy and structure formation.
The Local Volume dwarf galaxy DDO 68, from the spectroscopy of its two brightest HII regions (Knots 1 and 2) was designated as the second most metal-poor star-forming galaxy [12+log(O/H)=7.14]. In the repeated spectral observations in 2008 January wi th the 6-m telescope (BTA) of the HII region Knot 3 [having 12+log(O/H)=7.10+-0.06], we find a strong evidence of a transient event related to a massive star evolution. From the follow-up observation with the higher spectral resolution in 2008 February, we confirm this phenomenon, and give parameters of its emission-line spectrum comprising of Balmer HI and HeI lines. The luminosities of the strongest transient lines (Ha, Hb) are of a few 10^36 erg s^-1. We also detected an additional continuum component in the new spectrum of Knot 3, which displays the spectral energy distribution raising to ultraviolet. The estimate of the flux of this continuum leads us to its absolute V-band magnitude of ~-7.1. Based on the spectral properties of this transient component, we suggest that it is related to an evolved massive star of luminous blue variable type with Z=Zo/36. We briefly discuss observational constraints on parameters of this unique (in the aspect of the record low metallicity of the progenitor massive star) event and propose several lines of its study.
And IV is a low-surface brightness (LSB) dwarf galaxy at the distance of 6.1 Mpc, projecting close to M 31. In this paper the results of spectroscopy of And IV the two brightest HII regions with the SAO 6-m telescope (BTA) are presented. In both of t hem the faint line [OIII]4363 was detected that allowed us to determine their O/H by the classical T_e method. Their values of 12+log(O/H) are equal to 7.49+-0.06 and 7.55+-0.23, respectively. The comparison of these direct O/H determinations with the two most reliable semi-empirical and empirical methods shows their good consistency. For And IV absolute blue magnitude of M_B=-12.6, our value of O/H corresponds well to the `standard relation between O/H and L_B for dwarf irregular galaxies (DIGs). And IV appears to be a new representative of the extremely metal-deficient gas-rich galaxies in the Local Volume. The very large range of M(HI) for LSB galaxies with close metallicities and luminosities indicates that the simple models of LSBG chemical evolution are too limited to predict such striking diversity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا