ترغب بنشر مسار تعليمي؟ اضغط هنا

We have synthesized, crystallized and studied the structural and electric transport properties of organic molecular crystals based on a rubrene derivative with {em t}-butyl sidegroups at the 5,11 positions. Two crystalline modifications are observed: one (A) distinct from that of rubrene with larger spacings between the naphtacene backbones, the other (B) with a in-plane structure presumably very similar compared to rubrene. The electric transport properties reflect the different structures: in the latter phase (B) the in-plane hole mobility of 12 cm$^2$/Vs measured on single crystal FETs is just as high as in rubrene crystals, while in the A phase no field-effect could be measured. The high crystal quality, studied in detail for B, reflects itself in the density of gap states: The deep-level trap density as low as $10^{15}$ cm$^{-3}$ eV$^{-1}$ has been measured, and an exponential band tail with a characteristic energy of 22 meV is observed. The bulk mobility perpendicular to the molecular planes is estimated to be of order of $10^{-3}$ -- $10^{-1}$ cm$^2$/Vs.
138 - S. Haas , B. Batlogg , C. Besnard 2007
The uniaxial negative thermal expansion in pentacene crystals along $a$ is a particularity in the series of the oligoacenes, and exeptionally large for a crystalline solid. Full x-ray structure analysis from 120 K to 413 K reveals that the dominant t hermal motion is a libration of the rigid molecules about their long axes, modifying the intermolecular angle which describes the herringbone packing within the layers. This herringbone angle increases with temperature (by 0.3 -- 0.6$^{circ}$ per 100 K), and causes an anisotropic rearrangement of the molecules within the layers, i.e. an expansion in the $b$ direction, and a distinct contraction along $a$. Additionally, a larger herringbone angle improves the cofacial overlap between adjacent, parallel molecules, and thus enhances the attractive van der Waals forces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا