ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between $60^ circ$ and $80^circ$. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E > 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_1^alpha =(4.4 pm 1.0){times}10^{-2}$, that has a chance probability $P(ge r_1^alpha)=6.4{times}10^{-5}$, reinforcing the hint previously reported with vertical events alone.
We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distri buted sources of equal intrinsic intensity was found to be larger than $sim (0.06 - 5) times 10^{-4}$ Mpc$^{-3}$ at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range $(0.2 - 7) times 10^{-4}$ Mpc$^{-3}$, were obtained for sources following the local matter distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا