ترغب بنشر مسار تعليمي؟ اضغط هنا

Random linear network codes can be designed and implemented in a distributed manner, with low computational complexity. However, these codes are classically implemented over finite fields whose size depends on some global network parameters (size of the network, the number of sinks) that may not be known prior to code design. Also, if new nodes join the entire network code may have to be redesigned. In this work, we present the first universal and robust distributed linear network coding schemes. Our schemes are universal since they are independent of all network parameters. They are robust since if nodes join or leave, the remaining nodes do not need to change their coding operations and the receivers can still decode. They are distributed since nodes need only have topological information about the part of the network upstream of them, which can be naturally streamed as part of the communication protocol. We present both probabilistic and deterministic schemes that are all asymptotically rate-optimal in the coding block-length, and have guarantees of correctness. Our probabilistic designs are computationally efficient, with order-optimal complexity. Our deterministic designs guarantee zero error decoding, albeit via codes with high computational complexity in general. Our coding schemes are based on network codes over ``scalable fields. Instead of choosing coding coefficients from one field at every node, each node uses linear coding operations over an ``effective field-size that depends on the nodes distance from the source node. The analysis of our schemes requires technical tools that may be of independent interest. In particular, we generalize the Schwartz-Zippel lemma by proving a non-uniform version, wherein variables are chosen from sets of possibly different sizes. We also provide a novel robust distributed algorithm to assign unique IDs to network nodes.
In this work we consider the communication of information in the presence of an online adversarial jammer. In the setting under study, a sender wishes to communicate a message to a receiver by transmitting a codeword x=x_1,...,x_n symbol-by-symbol ov er a communication channel. The adversarial jammer can view the transmitted symbols x_i one at a time, and can change up to a p-fraction of them. However, the decisions of the jammer must be made in an online or causal manner. More generally, for a delay parameter 0<d<1, we study the scenario in which the jammers decision on the corruption of x_i must depend solely on x_j for j < i - dn. In this work, we initiate the study of codes for online adversaries, and present a tight characterization of the amount of information one can transmit in both the 0-delay and, more generally, the d-delay online setting. We prove tight results for both additive and overwrite jammers when the transmitted symbols are assumed to be over a sufficiently large field F. Finally, we extend our results to a jam-or-listen online model, where the online adversary can either jam a symbol or eavesdrop on it. We again provide a tight characterization of the achievable rate for several variants of this model. The rate-regions we prove for each model are informational-theoretic in nature and hold for computationally unbounded adversaries. The rate regions are characterized by simple piecewise linear functions of p and d. The codes we construct to attain the optimal rate for each scenario are computationally efficient.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا