ترغب بنشر مسار تعليمي؟ اضغط هنا

By using Majoranas stellar representation, we give a clear geometrical interpretation of the topological phases of inversion-symmetric polymerized models by mapping the Bloch states of multi-band systems to Majorana stars on the Bloch sphere. While t rajectories of Majorana stars of a filled Bloch band exhibit quite different geometrical structures for topologically trivial and nontrivial phases, we further demonstrate that these structures are uniquely determined by distributions of Majorana stars of two high-symmetrical momentum states, which have different parities for topologically different states.
We propose a model of Dirac neutrino masses generated at one-loop level. The origin of this mass is induced from Peccei-Quinn symmetry breaking which was proposed to solve the so-called strong CP problem in QCD, therefore, the neutrino mass is connec ted with the QCD scale, $Lambda_{rm QCD}$. We also study the parameter space of this model confronting with neutrino oscillation data and leptonic rare decays. The phenomenological implications to leptonic flavor physics such as the electromagnetic moment of charged leptons and neutrinos are studied. Axion as the dark matter candidate is one of the byproduct in our scenario. Di-photon and Z-photon decay channels in the LHC Higgs search are investigated, we show that the effects of singly charged singlet scalar can be distinguished from the general two Higgs doublet model.
411 - Chian-Shu Chen , Yong Tang 2012
Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM g auge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the $beta$ function of the Higgs quartic coupling $lambda$ and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of $SU(2)_{L}$ group, will bring the additional positive contributions to the gauge coupling $g_{2}$ renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.
To include the quark sector, the $A_{5}equiv I$ (icosahedron) four generation lepton model is extended to a binary icosahedral symmetry $I$ flavor model. We find the masses of fermions, including the heavy sectors, can be accommodated. At leading ord er the CKM matrix is the identity and the PMNS matrix, resulting from same set of vacua, corresponds to tribimaximal mixings.
We study the dynamical properties of a few bosons confined in an one-dimensional split hard wall trap with the interaction strength varying from the weakly to strongly repulsive regime. The system is initially prepared in one side of the double well by setting the barrier strength of the split trap to be infinity and then the barrier strength is suddenly changed to a finite value. Both exact diagonalization method and Bose-Hubbard model (BHM) approximation are used to study the dynamical evolution of the initial system. The exact results based on exact diagonaliztion verify the enhancement of correlated tunneling in the strongly interacting regime. Comparing results obtained by two different methods, we conclude that one-band BHM approximation can well describe the dynamics in the weakly interacting regime, but is not efficient to give quantitatively consistent results in the strongly interacting regime. Despite of the quantitative discrepancy, we validate that the form of correlated tunneling gives an important contribution to tunneling in the large interaction regime. To get a quantitative description for the dynamics of bosons in the strongly interacting regime, we find that a multi-band BHM approximation is necessary.
In this paper we investigate the von Neumann entropy in the ground state of one-dimensional anyonic systems with the repulsive interaction. Based on the Bethe-ansatz method, the entanglement properties for the arbitrary statistical parameter ($0leqka ppaleq1$) are obtained from the one-particle reduced density matrix in the full interacting regime. It is shown that the entanglement entropy increases with the increase in the interaction strength and statistical parameter. The statistic parameter affects the entanglement properties from two aspects: renormalizing of the effective interaction strength and introducing an additional anyonic phase. We also evaluate the entanglement entropy of hard-core anyons for different statistical parameters in order to clarify solely the effect induced by the anyonic phase.
We investigate ground-state properties of interacting two-component Bose gases in a hard-wall trap using both the Bethe ansatz and exact numerical diagonalization method. For equal intra- and inter-atomic interaction, the system is exactly solvable. Thus the exact ground state wavefunction and density distributions for the whole interacting regime can be obtained from the Bethe ansatz solutions. Since the ground state is a degenerate state with total spin S=N/2, the total density distribution are same for each degenerate state. The total density distribution evolves from a Gauss-like Bose distribution to a Fermi-like one as the repulsive interaction increases. The distribution of each component is N_i/N of the total density distribution. This is approximately true even in the experimental situation. In addition the numerical results show that with the increase of interspecies interaction the distributions of two Tonks-Girardeau gases exhibit composite fermionization crossover with each component developing N peaks in the strongly interacting regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا