ترغب بنشر مسار تعليمي؟ اضغط هنا

The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sens itive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
87 - R. K. Smith 2014
This white paper addresses selected new (to X-ray astronomy) physics and data analysis issues that will impact ASTRO-H SWG observations as a result of its high-spectral-resolution X-ray microcalorimeter, the focussing hard X-ray optics and correspond ing detectors, and the low background soft gamma-ray detector. We concentrate on issues of atomic and nuclear physics, including basic bound-bound and bound-free transitions as well as scattering and radiative transfer. The major topic categories include the physics of charge exchange, solar system X-ray sources, advanced spectral model, radiative transfer, and hard X-ray emission lines and sources.
92 - J. S. Kaastra 2014
In this white paper we describe the prospects for ASTRO-H for the study of outflows from active galactic nuclei. The most important breakthroughs in this field are expected to arise from the high spectral resolution and sensitivity in the Fe-K band, combined with broad-band sensitivity over the full X-ray band and spectral capabilities also at lower energies. The sensitivity in the Fe-K region allows to extend the absorption measure distribution of the outflow out to the highest ionisation states accessible, where observations with current X-ray missions indicate that most of the outflowing gas is to be found. Due to the high-resolution and sensitivity it will also be able to give the definitive proof for the existence of ultra-fast outflows, and if so, characterise their physical properties in great detail. These ultra-fast outflows carry very large amounts of energy and momentum, and are of fundamental importance for feedback studies. We show how the ASTRO-H observations in general can help to constrain numerical models for outflows. The link to reflection and emission processes is also discussed, as well as the possible relation between outflows and relativistic emission lines. Finally, we discuss the prospects for other related categories of objects like BAL quasars, partially covered sources and Compton thick outflows.
59 - K. Koyama 2014
The most characteristic high-energy phenomena in the Galactic center (GC) region is the presence of strong K-shell emission lines from highly ionized Si, S, Ar, Ca, Fe and Ni, which form the Galactic Center X-ray Emission (GCXE). These multiple lines suggest that the GCXE is composed of at least two plasmas with temperatures of ~1 and ~7 keV. The GCXE also exhibits the K-shell lines from neutral Si, S, Ar, Ca, Fe and Ni atoms. A debatable issue is the origin of the GCXE plasma; whether it is a diffuse plasma or integrated emission of many unresolved point sources such as cataclysmic variables and active binaries. Detailed spectroscopy for these lines may provide a reliable picture of the GCXE plasma. The origin of the K-shell lines from neutral atoms is most likely the fluorescence by X-rays from a putative past flare of Sgr A*. Therefore ASTRO-H may provide unprecedented data for the past light curve of Sgr A*. All these lines may provide key information for the dynamics of the GCXE, using possible Doppler shift and/or line broadening. This paper overviews these line features and the previous interpretation of their origin. We propose extended or revised science with the ASTRO-H observations of some select objects in the GC region.
98 - J. P. Hughes 2014
Thanks to the unprecedented spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) to soft thermal X-ray emission, ASTRO-H will open a new discovery window for understanding young, ejecta-dominated, supernova remnants (SNRs). In par ticular we study how ASTRO-H observations will address, comprehensively, three key topics in SNR research: (1) using abundance measurements to unveil SNR progenitors, (2) using spatial and velocity distribution of the ejecta to understand supernova explosion mechanisms, (3) revealing the link between the thermal plasma state of SNRs and the efficiency of their particle acceleration.
We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter GC South) has an angular size of ~42 x 16 centered at (l, b) ~ (0.0, -1.4), and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at ~2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density x elapsed time) of 5.3 x 10^11 s cm^-3. The absorption column density of GC South is consistent with that toward the GC region. Thus GC South is likely to be located in the GC region (~8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be 97 pc x 37 pc, 0.16 cm^-3, and 1.6 x 10^51 erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.
We report the Suzaku observation of 1E 1740.7-2942, a black hole candidate called the Great Annihilator (GA). The high-quality spectrum of Suzaku provides the severest constraints on the parameters of the GA. Two clumpy structures are found around th e GA in the line images of FeI Kalpha at 6.4 keV and SXV Kalpha at 2.45 keV. One clump named M359.23-0.04 exhibits the 6.4-keV line with an equivalent width of ~ 1.2 keV, and is associated with a molecular cloud in the radio CS(J=1-0) map. Thus the 6.4-keV line from M359.23-0.04 is likely due to X-ray fluorescence irradiated by an external X-ray source. The irradiating X-rays would be either the past flare of Sagittarius A* or the bright nearby source, the GA. The other clump named G359.12-0.05 is associated with the radio supernova remnant candidate G359.07-0.02. We therefore propose that G359.12-0.05 is an X-ray counterpart of G359.07-0.02. G359.12-0.05 has a thin thermal plasma spectrum with a temperature of kT ~ 0.9 keV. The plasma parameters of G359.12-0.05 are consistent with those of a single supernova remnant in the Galactic center region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا