ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a general approach to obtain effective field theories for topological crystalline insulators whose low-energy theories are described by massive Dirac fermions. We show that these phases are characterized by the responses to spatially depen dent mass parameters with interfaces. These mass interfaces implement the dimensional reduction procedure such that the state of interest is smoothly deformed into a topological crystal, which serves as a representative state of a phase in the general classification. Effective field theories are obtained by integrating out the massive Dirac fermions, and various quantized topological terms are uncovered. Our approach can be generalized to other crystalline symmetry protected topological phases and provides a general strategy to derive effective field theories for such crystalline topological phases.
Topological crystalline superconductors have attracted rapidly rising attention due to the possibility of higher-order phases, which support Majorana modes on boundaries in $d-2$ or lower dimensions. However, although the classification and bulk topo logical invariants in such systems have been well studied, it is generally difficult to faithfully predict the boundary Majoranas from the band-structure information due to the lack of well-established bulk-boundary correspondence. Here we propose a protocol for deriving symmetry indicators that depend on a minimal set of necessary symmetry data of the bulk bands and can diagnose boundary features. Specifically, to obtain indicators manifesting clear bulk-boundary correspondence, we combine the topological crystal classification scheme in the real space and a twisted equivariant K group analysis in the momentum space. The key step is to disentangle the generally mixed strong and weak indicators through a systematic basis-matching procedure between our real-space and momentum-space approaches. We demonstrate our protocol using an example of two-dimensional time-reversal odd-parity superconductors, where the inversion symmetry is known to protect a higher-order phase with corner Majoranas. Symmetry indicators derived from our protocol can be readily applied to ab initio database and could fuel material predictions for strong and weak topological crystalline superconductors with various boundary features.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا