ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the photoproduction of Lambda(1405,1/2^-) = Lambda* off the proton target using the effective Lagrangian in the Born approximation. We observed that, depending on the choice of the K* N Lambda* coupling strength, the total cross sectio n becomes 0.1 <~ sigma_Lambda* <~ 0.2 mu b near the threshold and starts to decrease beyond E_gamma ~ 1.6 GeV, and the angular dependence shows a mild enhancement in the forward direction. It turns out that the energy dependence of the total cross section is similar to that shown in the recent LEPS experiment. This suggests that the production mechanism of the Lambda* is dominated by the s-channel contribution.
We investigate the QCD magnetic susceptibility chi at the finite quark-chemical potential (mu>0) and at zero temperature (T=0) to explore the pattern of the magnetic phase transition of the QCD vacuum. For this purpose, we employ the nonlocal chiral quark model derived from the instanton vacuum in the presence of the chemical potential in the chiral limit. Focusing on the Nambu-Goldstone phase, we find that the magnetic susceptibility remains almost stable to mu~200 MeV, and falls down drastically until the the quark-chemical potential reaches the critical point mu_c~320 MeV. Then, the strength of the chi is reduced to be about a half of that at mu=0, and the first-order magnetic phase transition takes place, corresponding to the chiral restoration. From these observations, we conclude that the response of the QCD vacuum becomes weak and unstable to the external electromagnetic field near the critical point, in comparison to that for vacuum. It is also shown that the breakdown of Lorentz invariance for the magnetic susceptibility, caused by the finite chemical potential, turns out to be small.
We investigate the eta photoproduction using the effective Lagrangian approach at the tree level. We focus on the new nucleon resonance N*(1675), which was reported by the GRAAL, CB-ELSA and Tohoku LNS, testing its possible spin and parity states the oretically (J^P=1/2^+-,3/2^+-). In addition, we include six nucleon resonances, D_13(1520), S_11(1535), S_11(1650), D_15(1675), P_11(1710), P_13(1720) as well as the possible background contributions. We calculate various cross sections including beam asymmetries for the neutron and proton targets. We find noticeable isospin asymmetry in transition amplitudes for photon and neutron targets. This observation may indicate that the new resonance can be identified as a non-strangeness member of the baryon antidecuplet.
85 - Seung-il Nam 2009
The scalar susceptibility (chi_s) of QCD, which represents the response of the chiral condensate to a small perturbation of explicit chiral-symmetry breaking, is investigated within the nonlocal chiral quark model (NLchiQM) based on the instanton vac uum configuration for N_f = 2. We also take into account 1/N_c meson-loop (ML) corrections including scalar and pseudoscalar mesons. It turns out that the chiral condensate is modified to a large extend by the ML corrections in the vicinity of m = 0, whereas its effect becomes weak beyond m ~ 100 MeV. As numerical results, we find that chi_s = -0.34 GeV^2 with the ML corrections and 0.18 GeV^2 without it, respectively. From these observations, we conclude that the ML corrections play an important role in the presence of finite current-quark mass.
In this talk, we report our recent work on the pion weak decay constant (F_pi) and pion mass (m_pi) using the nonlocal chiral quark model with the finite quark-number chemical potential (mu) taken into account. Considering the breakdown of Lorentz in variance at finite density, the time and space components are computed separately, and the corresponding results turn out to be: F^t_pi = 82.96 MeV and F^s_pi = 80.29 MeV at mu_c ~ 320 MeV, respectively. Using the in-medium Gell-Mann Oakes-Renner (GOR) relation, we show that the pion mass increases by about 15% at mu_c.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا