ترغب بنشر مسار تعليمي؟ اضغط هنا

The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.
Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly io nized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.
Spontaneous symmetry breaking is an essential feature of modern science. We demonstrate that it also plays an important role in the physics of complex plasmas. Complex plasmas can serve as a powerful tool for observing and studying discrete types of symmetry and disordering at the kinetic level that numerous many-body systems exhibit.
131 - S. Zhdanov 2008
Experimental results on an auto-oscillatory pattern observed in a complex plasma are presented. The experiments are performed with an argon plasma which is produced under microgravity conditions using a capacitively-coupled rf discharge at low power and gas pressure. The observed intense wave activity in the complex plasma cloud correlates well with the low-frequency modulation of the discharge voltage and current and is initiated by periodic void contractions. Particle migrations forced by the waves are of long-range repulsive and attractive character.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا