ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse a system composed of a qubit coupled to electromagnetic fields of two high quality quantum oscillators. Particular realization of such a system is the superconducting qubit coupled to a transmission-line resonator driven by two signals wit h frequencies close to the resonators harmonics. One strong signal is used for exciting the system to a high energetic state while the second weak signal is applied for probing effective eigenstates of the system. We demonstrate that a description of the system dynamics as doubly dressed qubit is applicable. Experiments show that in the case of high quality resonators the energy levels and the resonance conditions can be probed even for high driving amplitudes. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier or an attenuator.
Two basic physical models, a two-level system and a harmonic oscillator, are realized on the mesoscopic scale as coupled qubit and resonator. The realistic system includes moreover the electronics for controlling the distance between the qubit energy levels and their populations and to read out the resonators state, as well as the unavoidable dissipative environment. Such rich system is interesting both for the study of fundamental quantum phenomena on the mesoscopic scale and as a promising system for future electronic devices. We present recent results for the driven superconducting qubit-resonator system, where the resonator can be realized as an LC circuit or a nanomechanical resonator. Most of the results can be described by the semiclassical theory, where a qubit is treated as a quantum two-level system coupled to the classical driving field and the classical resonator. Application of this theory allows to describe many phenomena for the single and two coupled superconducting qubits, among which are the following: the equilibrium-state and weak-driving spectroscopy, Sisyphus damping and amplification, Landau-Zener-Stuckelberg interferometry, the multiphoton transitions of both direct and ladder- type character, and creation of the inverse population for lasing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا