ترغب بنشر مسار تعليمي؟ اضغط هنا

311 - A.V. Khoperskov 2013
Using $N$-body simulations ($Nsim 10^6 - 10^7$), we examine how a non-axisymmetric dark halo affects the dynamical evolution of the structure in collisionless (stellar) discs. We demonstrate how the model parameters such as mass of the halo, initial conditions in the disc and the halo axes ratio affect morphology and kinematics of the stellar discs. We show that a non-axisymmetric halo can generate a large-scale spiral density pattern in the embedded stellar disc. The pattern is observed in the disc for many periods of its revolution, even if the disc is gravitationally over-stable. The growth of the spiral arms is not accompanied by significant dynamical heating of the disc, irrelevant to its initial parameters. We also investigate transformation of the dark halos shape driven by the long-lived spiral pattern in the disc . We show that the analysis of the velocity field in the stellar disc and in the spiral pattern gives us a possibility to figure out the spatial orientation of the triaxial-shaped dark halo and to measure the triaxiality.
Spectroscopic observations at the Russian 6-m telescope are used to study the two polar ring galaxies (PRGs) from the catalogue by Moiseev et al.: SPRC-7 and SPRC-260. We have analyzed the kinematics of the stellar component of the central galaxies a s well as the ionized gas kinematics in the external ring structures. The disc-halo decomposition of rotation curves in two perpendicular directions are considered. The observed 2D velocity fields are compared with the model predictions for different dark halo shapes. Based on these data, we constrain that for potential of DM halo semiaxis ratios is $s=0.8$, $q=1$ for SPRC-7 and $s=0.95$, $q=1.1$ for SPRC-260. Using 3D hydrodynamic simulations we also study the dynamics and evolution of the polar component in the potential of the galactic disc and dark halo for these two galaxies. We show that the polar component is dynamically quasi-stable on the scale of $sim10$ dynamical times (about a few Gyr). This is demonstrate the possibility for the growth of a spiral structure, which then steadily transforms to a lopsided gaseous system in the polar pane.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا