ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the identification of a source coincident with the position of the nearby type II-P supernova (SN) 2008bk in high quality optical and near-infrared pre-explosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared pre-explosion images is identified to within about +-70 and +-40 mas, respectively, using post-explosion Ks-band images obtained with the NAOS CONICA adaptive optics system on the VLT. The pre-explosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colours and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +- 1.0 Msun.
We present near- and mid-infrared (IR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope, and the Spitzer Space Telescope between days 86 and 493 post-explos ion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the near-IR emission arises from an IR echo from newly-condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV) like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest 3.0 x 10^(-4) M(solar) by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing CSM dust is at least ~8 x 10^(-3) M(solar). This work therefore adds to the evidence that mass-loss from the progenitors of core-collapse supernovae could be a major source of dust in the universe. However, yet again, we see no direct evidence that the explosion of a supernova produces anything other than a very modest amount of dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا