ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - Seiji Zenitani 2015
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost p articles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ${approx}50%$ for generic cases and $100%$ for symmetric distributions. They can be combined with arbitrary base algorithms.
57 - Seiji Zenitani 2015
The shock structure of a plasmoid in magnetic reconnection in low-beta plasmas is investigated by two-dimensional magnetohydrodynamic simulations. Using a high-accuracy code with unprecedented resolution, shocks, discontinuities, and their intersecti ons are resolved and clarified. Contact discontinuities emanate from triple-shock intersection points, separating fluids of different origins. Shock-diamonds inside the plasmoid appear to decelerate a supersonic flow. New shock-diamonds and a slow expansion fan are found inside the Petschek outflow. A sufficient condition for the new shock-diamonds and the relevance to astrophysical jets are discussed.
The structure of the diffusion regions in antiparallel magnetic reconnection is investigated by means of a theory and a Vlasov simulation. The magnetic diffusion is considered as relaxation to the frozen-in state, which depends on a reference velocit y field. A field-aligned component of the frozen-in condition is proposed to evaluate a diffusion-like process. Diffusion signatures with respect to ion and electron bulk flows indicate the ion and electron diffusion regions near the reconnection site. The electron diffusion region resembles the energy dissipation region. These results are favorable to a previous expectation that an electron-scale dissipation region is surrounded by an ion-scale Hall-physics region.
61 - S. Zenitani , M. Hoshino 2014
Particle acceleration in the magnetic reconnection of electron-positron plasmas is studied by using a particle-in-cell simulation. It is found that a significantly large number of nonthermal particles are generated by the inductive electric fields ar ound an X-type neutral line when the reconnection outflow velocity, which is known to be an Alfv{e}n velocity, is on the order of the speed of light. In such a relativistic reconnection regime, we also find that electrons and positrons form a power-law-like energy distribution through their drift along the reconnection electric field under the relativistic Speiser motion. A brief discussion of the relevance of these results to the current sheet structure, which has an antiparallel magnetic field in astrophysical sources of synchrotron radiation, is presented.
Kinetic aspects of the ion current layer at the center of a reconnection outflow exhaust near the X-type region are investigated by a two-dimensional particle-in-cell (PIC) simulation. The layer consists of magnetized electrons and unmagnetized ions that carry a perpendicular electric current. The ion fluid appears to be nonideal, sub-Alfvenic, and nondissipative. The ion velocity distribution functions contain multiple populations such as global Speiser ions, local Speiser ions, and trapped ions. The particle motion of the local Speiser ions in an appropriately rotated coordinate system explains the ion fluid properties very well. The trapped ions are the first demonstration of the regular orbits in the chaotic particle dynamics [Chen and Palmadesso, J. Geophys. Res., 91, 1499 (1986)] in self-consistent PIC simulations. They would be observational signatures in the ion current layer near reconnection sites.
Signatures of the dissipation region of collisionless magnetic reconnection are investigated by the Geotail spacecraft for the 15 May 2003 event. The energy dissipation in the rest frame of the electrons bulk flow is considered in an approximate form D*_e, which is validated by a particle-in-cell simulation. The dissipation measure is directly evaluated from the {plasma moments}, the electric field, and the magnetic field. Using D*_e, a compact dissipation region is successfully detected in the vicinity of the possible X-point in Geotail data. The dissipation rate is 45 pWm**{-3}. The length of the dissipation region is estimated to 1--2 local ion inertial length. The Lorentz work W, the work rate by Lorentz force to plasmas, is also introduced. It is positive over the reconnection region and it has a peak around the pileup region away from the X-point. These new measures D*_e and W provide useful information to understand the reconnection structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا