ترغب بنشر مسار تعليمي؟ اضغط هنا

61 - S. Haan , L. Armus , J.A. Surace 2013
Nuclear stellar cusps are defined as central excess light component in the stellar light profiles of galaxies and are suggested to be stellar relics of intense compact starbursts in the central ~100-500 pc region of gas-rich major mergers. Here we pr obe the build-up of nuclear cusps during the actual starburst phase for a complete sample of Luminous Infrared Galaxy systems (85 LIRGs, with 11.4<log[LIR/L_sun]<12.5) in the GOALS sample. Cusp properties are derived via 2-dimensional fitting of the nuclear stellar light imaged in the near-infrared by the Hubble Space Telescope and have been combined with mid-IR diagnostics for AGN/starburst characterization. We find that nuclear stellar cusps are resolved in 76% of LIRGs (merger and non-interacting galaxies). The cusp strength and luminosity increases with far-IR luminosity (excluding AGN) and merger stage, confirming theoretical models that starburst activity is associated with the build-up of nuclear stellar cusps. Evidence for ultra compact nuclear starbursts is found in ~13% of LIRGs, which have a strong unresolved central NIR light component but no significant contribution of an AGN. The nuclear near-IR surface density (measured within 1 kpc radius) increases by a factor of ~5 towards late merger stages. A careful comparison to local early-type galaxies with comparable masses reveals (a) that local (U)LIRGs have a significantly larger cusp fraction and (b) that the majority of the cusp LIRGs have host galaxy luminosities (H-band) similar to core ellipticals which is roughly one order in magnitude larger than for cusp ellipticals.
69 - S. Haan , L. Armus , S. Laine 2011
We have mapped the key mid-IR diagnostics in eight major merger systems of the Toomre Sequence (NGC4676, NGC7592, NGC6621, NGC2623, NGC6240, NGC520, NGC3921, and NGC7252) using the Spitzer Infrared Spectrograph (IRS). With these maps, we explore the variation of the ionized-gas, PAH, and warm-gas (H_2) properties across the sequence and within the galaxies. While the global PAH interband strength and ionized gas flux ratios ([Ne III]/[Ne II]) are similar to those of normal star forming galaxies, the distribution of the spatially resolved PAH and fine structure line flux ratios is significant different from one system to the other. Rather than a constant H_2/PAH flux ratio, we find that the relation between the H_2 and PAH fluxes is characterized by a power law with a roughly constant exponent (0.61+/-0.05) over all merger components and spatial scales. While following the same power law on local scales, three galaxies have a factor of ten larger integrated (i.e. global) H_2/PAH flux ratio than the rest of the sample, even larger than what it is in most nearby AGNs. These findings suggest a common dominant excitation mechanism for H_2 emission over a large range of global H_2/PAH flux ratios in major mergers. Early merger systems show a different distribution between the cold (CO J=1-0) and warm (H_2) molecular gas component, which is likely due to the merger interaction. Strong evidence for buried star formation in the overlap region of the merging galaxies is found in two merger systems (NGC6621 and NGC7592) as seen in the PAH, [Ne II], [Ne III], and warm gas line emission, but with no apparent corresponding CO (J=1-0) emission. Our findings also demonstrate that the variations of the physical conditions within a merger are much larger than any systematic trends along the Toomre Sequence.
85 - S. Haan , J.A. Surace , L. Armus 2010
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا