ترغب بنشر مسار تعليمي؟ اضغط هنا

We reexamine the one-dimensional spin-1 $XXZ$ model with on-site uniaxial single-ion anisotropy as to the appearance and characterization of the symmetry-protected topological Haldane phase. By means of large-scale density-matrix renormalization grou p (DMRG) calculations the central charge can be determined numerically via the von Neumann entropy, from which the ground-sate phase diagram of the model can be derived with high precision. The nontrivial gapped Haldane phase shows up in between the trivial gapped even Haldane and N{e}el phases, appearing at large single-ion and spin--exchange interaction anisotropies, respectively. We furthermore carve out a characteristic degeneracy of the lowest entanglement level in the topological Haldane phase, which is determined using a conventional finite-system DMRG technique with both periodic and open boundary conditions. Defining the spin and neutral gaps in analogy to the single-particle and neutral gaps in the intimately connected extended Bose-Hubbard model, we show that the excitation gaps in the spin model qualitatively behave just as for the bosonic system. We finally compute the dynamical spin structure factor in the three different gapped phases and find significant differences in the intensity maximum which might be used to distinguish these phases experimentally.
192 - Satoshi Ejima , Florian Lange , 2014
We discuss the existence of a nontrivial topological phase in one-dimensional interacting systems described by the extended Bose-Hubbard model with a mean filling of one boson per site. Performing large-scale density-matrix renormalization group calc ulations we show that the presence of nearest-neighbor repulsion enriches the ground-state phase diagram of the paradigmatic Bose-Hubbard model by stabilizing a novel gapped insulating state, the so-called Haldane insulator, which, embedded into superfluid, Mott insulator, and density wave phases, is protected by the lattice inversion symmetry. The quantum phase transitions between the different insulating phases were determined from the central charge via the von Neumann entropy. The Haldane phase reveals a characteristic fourfold degeneracy of the entanglement spectrum. We finally demonstrate that the intensity maximum of the dynamical charge structure factor, accessible by Bragg spectroscopy, features the gapped dispersion known from the spin-1 Heisenberg chain.
98 - S. Ejima , T. Kaneko , Y. Ohta 2013
Using exact numerical techniques we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the mod el exhibits, besides band insulator and staggered orbital ordered phases, an excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in the von Neumann entropy. The anomalous spectral function and condensation amplitude provide the binding energy and coherence length of the electron-hole pairs which, on their part, point towards a Coulomb interaction driven crossover from BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance between electrons and holes does not affect the location of the BCS-BEC crossover regime it favors staggered orbital ordering to the disadvantage of the EI. Within the BEC regime the quasiparticle dispersion develops a flat valence-band top in accord with the experimental finding for Ta$_2$NiSe$_5$.
111 - S. Ejima , F. Gebhard , R.M. Noack 2008
We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the Lanczos exact diagonalization method in real space to calculate the ground-state energy, the average double occupancy, the charge gap, the momentum distribution, and the quasi-particle weight. We find a satisfactory agreement with perturbative results in the weak- and strong-coupling limits. A straightforward extrapolation of the RDA data for $Lleq 14$ lattice results in a continuous Mott-Hubbard transition at $U_{rm c}approx W$. We discuss the significance of a possible signature of a coexistence region between insulating and metallic ground states in the RDA that would correspond to the scenario of a discontinuous Mott-Hubbard transition as found in numerical investigations of the Dynamical Mean-Field Theory for the Hubbard model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا