ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the example of Zn-doped La2CuO4, we demonstrate that a spinless impurity doped into a non-frustrated antiferromagnet can induce substantial frustrating interactions among the spins surrounding it. This counterintuitive result is the key to reso lving discrepancies between experimental data and earlier theories. Analytic and quantum Monte Carlo studies of the impurity-induced frustration are in a close accord with each other and experiments. The mechanism proposed here should be common to other correlated oxides as well.
We consider a generalization of the one-dimensional t-J model with anisotropic spin-spin interactions. We show that the anisotropy leads to an effective attractive interaction between the spinon and holon excitations, resulting in a localized bound s tate. Detailed quantitative analytic predictions for the dependence of the binding energy on the anisotropy are presented, and verified by precise numerical simulations. The binding energy is found to interpolate smoothly between a finite value in the t-Jz limit and zero in the isotropic limit, going to zero exponentially in the vicinity of the latter. We identify changes in spinon dispersion as the primary factor for this non-trivial behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا