ترغب بنشر مسار تعليمي؟ اضغط هنا

We use PACS and SPIRE continuum data at 160 um, 250 um, 350 um, and 500 um from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC348, L1448, L1455, and NGC1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 um as well as archival Spitzer catalogues and SCUBA 850 um photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.
We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four diff erent techniques to combine the Herschel PACS+SPIRE data at 160 - 500 microns with the SCUBA-2 data at 450 microns and 850 microns. Of our four techniques, we found the most robust method was to filter-out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find beta ~ 2 towards the filament region and moderately dense material and lower beta values (beta > 1.6) towards the dense protostellar cores, possibly due to dust grain growth. We find that beta and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~ 2 for beta and by ~ 40% for temperature. Furthermore, we find core mass differences of < 30% compared to Herschel-only estimates with an adopted beta = 2, highlighting the necessity of long wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.
We present continuum observations of the Perseus B1-E region from the Herschel Gould Belt Survey. These Herschel data reveal a loose grouping of substructures at 160 - 500 micron not seen in previous submillimetre observations. We measure temperature and column density from these data and select the nine densest and coolest substructures for follow-up spectral line observations with the Green Bank Telescope. We find that the B1-E clump has a mass of ~ 100 solar masses and appears to be gravitationally bound. Furthermore, of the nine substructures examined here, one substructure (B1-E2) appears to be itself bound. The substructures are typically less than a Jeans length from their nearest neighbour and thus, may interact on a timescale of ~ 1 Myr. We propose that B1-E may be forming a first generation of dense cores, which could provide important constraints on the initial conditions of prestellar core formation. Our results suggest that B1-E may be influenced by a strong, localized magnetic field, but further observations are still required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا