ترغب بنشر مسار تعليمي؟ اضغط هنا

Load balancing by proactively offloading users onto small and otherwise lightly-loaded cells is critical for tapping the potential of dense heterogeneous cellular networks (HCNs). Offloading has mostly been studied for the downlink, where it is gener ally assumed that a user offloaded to a small cell will communicate with it on the uplink as well. The impact of coupled downlink-uplink offloading is not well understood. Uplink power control and spatial interference correlation further complicate the mathematical analysis as compared to the downlink. We propose an accurate and tractable model to characterize the uplink SINR and rate distribution in a multi-tier HCN as a function of the association rules and power control parameters. Joint uplink-downlink rate coverage is also characterized. Using the developed analysis, it is shown that the optimal degree of channel inversion (for uplink power control) increases with load imbalance in the network. In sharp contrast to the downlink, minimum path loss association is shown to be optimal for uplink rate. Moreover, with minimum path loss association and full channel inversion, uplink SIR is shown to be invariant of infrastructure density. It is further shown that a decoupled association---employing differing association strategies for uplink and downlink---leads to significant improvement in joint uplink-downlink rate coverage over the standard coupled association in HCNs.
Millimeter wave (mmW) cellular systems will require high gain directional antennas and dense base station (BS) deployments to overcome high near field path loss and poor diffraction. As a desirable side effect, high gain antennas provide interference isolation, providing an opportunity to incorporate self-backhauling--BSs backhauling among themselves in a mesh architecture without significant loss in throughput--to enable the requisite large BS densities. The use of directional antennas and resource sharing between access and backhaul links leads to coverage and rate trends that differ significantly from conventional microwave ($mu$W) cellular systems. In this paper, we propose a general and tractable mmW cellular model capturing these key trends and characterize the associated rate distribution. The developed model and analysis is validated using actual building locations from dense urban settings and empirically-derived path loss models. The analysis shows that in sharp contrast to the interference limited nature of $mu$W cellular networks, the spectral efficiency of mmW networks (besides total rate) also increases with BS density particularly at the cell edge. Increasing the system bandwidth, although boosting median and peak rates, does not significantly influence the cell edge rate. With self-backhauling, different combinations of the wired backhaul fraction (i.e. the faction of BSs with a wired connection) and BS density are shown to guarantee the same median rate (QoS).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا