ترغب بنشر مسار تعليمي؟ اضغط هنا

297 - Sara Lucatello 2010
We present the N, O, F and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars, eight enhanced in s-process (CEMP-s) elements and two poor in n-capture elements (CEMP-no). The abundan ces are derived from IR, K-band, high-resolution CRIRES@VLT spectra obtained. The metallicity of our sample ranges from [Fe/H]=-3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe]=0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe]=1.44. For the remaining eight objects, including both CEMP-no in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity Asymptotic Giant Branch stars, account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25 to 1.7 Msun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars, in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constraint the models.
52 - R.G. Gratton 2010
Recent surveys confirm early results about a deficiency or even absence of CN-strong stars on the asymptotic giant branch (AGB) of globular clusters (GCs), although with quite large cluster-to-cluster variations. In general, this is at odds with the distribution of CN band strengths among first ascent red giant branch (RGB) stars. Norris et al. proposed that the lack of CN-strong stars in some clusters is a consequence of a smaller mass of these stars that cannot evolve through the full AGB phase. In this short paper we found that the relative frequency of AGB stars can change by a factor of two between different clusters. We also find a very good correlation between the minimum mass of stars along the horizontal branch (Gratton et al. 2010) and the relative frequency of AGB stars, with a further dependence on metallicity. We conclude that indeed the stars with the smallest mass on the HB cannot evolve through the full AGB phase, being AGB-manque. These stars likely had large He and N content, and large O-depletion. We then argue that there should not be AGB stars with extreme O depletion, and few of them with a moderate one.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا