ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of ind ividuals as elementary units in social structures. Here we review the state of the art by focusing on a wide list of topics ranging from opinion, cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, social spreading. We highlight the connections between these problems and other, more traditional, topics of statistical physics. We also emphasize the comparison of model results with empirical data from social systems.
Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this c ommunity structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
Community structure is one of the most important features of real networks and reveals the internal organization of the nodes. Many algorithms have been proposed but the crucial issue of testing, i.e. the question of how good an algorithm is, with re spect to others, is still open. Standard tests include the analysis of simple artificial graphs with a built-in community structure, that the algorithm has to recover. However, the special graphs adopted in actual tests have a structure that does not reflect the real properties of nodes and communities found in real networks. Here we introduce a new class of benchmark graphs, that account for the heterogeneity in the distributions of node degrees and of community sizes. We use this new benchmark to test two popular methods of community detection, modularity optimization and Potts model clustering. The results show that the new benchmark poses a much more severe test to algorithms than standard benchmarks, revealing limits that may not be apparent at a first analysis.
Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on thei r topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.
Graph vertices are often organized into groups that seem to live fairly independently of the rest of the graph, with which they share but a few edges, whereas the relationships between group members are stronger, as shown by the large number of mutua l connections. Such groups of vertices, or communities, can be considered as independent compartments of a graph. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. The task is very hard, though, both conceptually, due to the ambiguity in the definition of community and in the discrimination of different partitions and practically, because algorithms must find ``good partitions among an exponentially large number of them. Other complications are represented by the possible occurrence of hierarchies, i.e. communities which are nested inside larger communities, and by the existence of overlaps between communities, due to the presence of nodes belonging to more groups. All these aspects are dealt with in some detail and many methods are described, from traditional approaches used in computer science and sociology to recent techniques developed mostly within statistical physics.
58 - Santo Fortunato 2007
Community structure represents the local organization of complex networks and the single most important feature to extract functional relationships between nodes. In the last years, the problem of community detection has been reformulated in terms of the optimization of a function, the Newman-Girvan modularity, that is supposed to express the quality of the partitions of a network into communities. Starting from a recent critical survey on modularity optimization, pointing out the existence of a resolution limit that poses severe limits to its applicability, we discuss the general issue of the use of quality functions in community detection. Our main conclusion is that quality functions are useful to compare partitions with the same number of modules, whereas the comparison of partitions with different numbers of modules is not straightforward and may lead to ambiguities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا