ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray source RX J0648.0-4418 is the only confirmed binary system in which a compact object, most likely a massive white dwarf, accretes from a hot subdwarf companion, the bright sdO star HD 49798. The X-ray emission from this system is characteri zed by two periodic modulations caused by an eclipse, at the orbital period of 1.55 d, and by the rotation of the compact object with a spin period of 13.2 s. In 2011 we obtained six short XMM-Newton observations centered at orbital phase 0.75, in order to study the system during the eclipse, and spaced at increasingly long time intervals in order to obtain an accurate measure of the spin-period evolution through phase-connected timing. The duration of the eclipse ingress and egress, 500 s, indicates the presence of an X-ray emitting region with dimensions of the order of a few 10^4 km, surrounding the pulsar and probably due to scattering in the companions wind. We derived an upper limit on the spin-period derivative |Pdot|<6x10^-15 s/s, more than two orders of magnitude smaller than the previously available value. Significant X-ray emission is detected also during the 1.2 hours-long eclipse, with a luminosity of about 3x10^30 erg/s. The eclipse spectrum shows prominent emission lines of H- and He-like nitrogen, an overabundant element in HD 49798. These findings support the suggestion that the X-ray emission observed during the eclipse originates in HD 49798 and that the processes responsible for X-ray emission in the stellar winds of massive O stars are also at work in the much weaker winds of hot subdwarfs.
In October 2007 a hard X-ray burst was detected by the INTEGRAL satellite from a direction consistent with the position of AX J1818.8-1559, an X-ray source at low Galactic latitude discovered with the ASCA satellite in 1996-1999. The short duration ( 0.8 s) and soft spectrum (power law photon index of 3.0+/-0.2) of the burst in the 20-100 keV range are typical of Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars. We report on the results of an observation of AX J1818.8-1559 obtained with the Suzaku satellite in October 2011. The source spectrum, a power law with photon index 1.5, and flux 2x10^{-12} erg cm^-2 s^-1 (2-10 keV), do not show significant variations with respect to the values derived from archival data of various satellites (ROSAT, XMM-Newton, Chandra, Swift) obtained from 1993 to 2011. We discuss possible interpretations for AX J1818.8-1559 and, based on its association with the INTEGRAL burst, we propose it as a new member of the small class of magnetar candidates.
We report on a detailed spectral analysis of all the available XMM-Newton data of RX J1856.5-3754, the brightest and most extensively observed nearby, thermally emitting neutron star. Very small variations (~1-2%) in the single-blackbody temperature are detected, but are probably due to an instrumental effect, since they correlate with the position of the source on the detector. Restricting the analysis to a homogeneous subset of observations, with the source at the same detector position, we place strong limits on possible spectral or flux variations from March 2005 to present-day. A slightly higher temperature (kT~61.5 eV, compared to the average value kT~61 eV) was instead measured in April 2002. If this difference is not of instrumental origin, it implies a rate of variation of about 0.15 eV/yr between April 2002 and March 2005. The high-statistics spectrum from the selected observations is well fit by the sum of two blackbody models, which extrapolate to an optical flux level in agreement with the observed value.
Stellar evolutionary models predict that most of the early type subdwarf stars in close binary systems have white dwarf companions. More massive companions, such as neutron stars or black holes, are also expected in some cases. The presence of compac t stars in these systems can be revealed by the detection of X-rays powered by accretion of the subdwarfs stellar wind or by surface thermal emission. Using the Swift satellite, we carried out a systematic search for X-ray emission from a sample of twelve subdwarf B stars which, based on optical studies, have been suggested to have degenerate companions. None of our targets was detected, but the derived upper limits provide one of the few observational constraints on the stellar winds of early type subdwarfs. If the presence of neutron star companions is confirmed, our results constrain the mass loss rates of some of these subdwarf B stars to values <10^{-13}-10^{-12} Msun/yr.
81 - S.Mereghetti 2011
We report the results of XMM-Newton observations of HD49798/RXJ0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P=13.2 s) and has a dynamically measured mass of 1.28+/-0.0 5 M_sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT~40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~10^{32} erg/s is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass-loss. A search for optical pulsations at the South African Astronomical Observatory 1.9-m telescope gave negative results. X-rays were detected also during the white dwarf eclipse. This emission, with luminosity 2x10^{30} erg/s, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD49798/RXJ0648.0-4418 is a post-common envelope binary which most likely originated from a pair of stars with masses ~8-10 M_sun. After the current He-burning phase, HD 49798 will expand and reach the Roche-lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.
77 - S. Mereghetti 2010
During an X-ray survey of the Small Magellanic Cloud, carried out with the XMM-Newton satellite, we detected significant soft X-ray emission from the central star of the high-excitation planetary nebula SMP SMC 22. Its very soft spectrum is well fit with a non local thermodynamical equilibrium model atmosphere composed of H, He, C, N, and O, with abundances equal to those inferred from studies of its nebular lines. The derived effective temperature of 1.5x10^5 K is in good agreement with that found from the optical/UV data. The unabsorbed flux in the 0.1-0.5 keV range is about 3x10^{-11} erg cm^-2 s^-1, corresponding to a luminosity of 1.2x10^37 erg/s at the distance of 60 kpc. We also searched for X-ray emission from a large number of SMC planetary nebulae, confirming the previous detection of SMP SMC 25 with a luminosity of (0.2-6)x10^35 erg/s (0.1-1 keV). For the remaining objects that were not detected, we derived flux upper limits corresponding to luminosity values from several tens to hundreds times smaller than that of SMP SMC 22. The exceptionally high X-ray luminosity of SMP SMC 22 is probably due to the high mass of its central star, quickly evolving toward the white dwarfs cooling branch, and to a small intrinsic absorption in the nebula itself.
An XMM-Mewton observation performed in May 2008 has confirmed that the 13 seconds pulsations in the X-ray binary HD 49798/RX J0648.0-4418 are due to a rapidly rotating white dwarf. From the pulse time delays induced by the 1.55 days orbital motion, a nd the systems inclination, constrained by the duration of the X-ray eclipse discovered in this observation, we could derive a mass of 1.28+/-0.05 M_sun for the white dwarf. The future evolution of this post common envelope binary system will likely involve a new phase of mass accretion through Roche-lobe overflow that could drive the already massive white dwarf above the Chandrasekhar limit and produce a Type Ia supernova.
The study of Gamma-ray bursts (GRBs) is a key field to expand our understanding of several astrophysical and cosmological phenomena. SVOM is a Chinese-French Mission which will permit to detect and rapidly locate GRBs, in particular those at high red shift, and to study their multiwavelength emission. The SVOM satellite, to be launched in 2013, will carry wide field instruments operating in the X/gamma-ray band and narrow field optical and soft X-ray telescopes. Here we describe a small soft X-ray telescope (XIAO) proposed as an Italian contribution to the SVOM mission. Thanks to a grazing incidence X-ray telescope with effective area of ~120 cm^2 and a short focal length, coupled to a very compact, low noise, fast read out CCD camera, XIAO can substantially contribute to the overall SVOM capabilities for both GRB and non-GRB science.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا