ترغب بنشر مسار تعليمي؟ اضغط هنا

Biquandle brackets define invariants of classical and virtual knots and links using skein invariants of biquandle-colored knots and links. Biquandle coloring quivers categorify the biquandle counting invariant in the sense of defining quiver-valued e nhancements which decategorify to the counting invariant. In this paper we unite the two ideas to define biquandle bracket quivers, providing new categorifications of biquandle brackets. In particular, our construction provides an infinite family of categorifications of the Jones polynomial and other classical skein invariants.
310 - Melody Chang , Sam Nelson 2021
We use the structure of skew braces to enhance the biquandle counting invariant for virtual knots and links for finite biquandles defined from skew braces. We introduce two new invariants: a single-variable polynomial using skew brace ideals and a tw o-variable polynomial using the skew brace group structures. We provide examples to show that the new invariants are not determined by the counting invariant and hence are proper enhancements.
We enhance the psyquandle counting invariant for singular knots and pseudoknots using quivers analogously to quandle coloring quivers. This enables us to extend the in-degree polynomial invariants from quandle coloring quiver theory to the case of si ngular knots and pseudoknots. As a side effect we obtain biquandle coloring quivers and in-degree polynomial invariants for classical and virtual knots and links.
We introduce two notions of quandle polynomials for G-families of quandles: the quandle polynomial of the associated quandle and a G-family polynomial with coefficients in the group ring of G. As an application we define image subquandle polynomial e nhancements of the G-family counting invariant for trivalent spatial graphs and handlebody-links. We provide examples to show that the new enhancements are proper.
We introduce a six-variable polynomial invariant of Niebrzydowski tribrackets analogous to quandle,rack and biquandle polynomials. Using the subtribrackets of a tribracket, we additionally define subtribracket polynomials and establish a sufficient c ondition for isomorphic subtribrackets to have the same polynomial regardless of their embedding in the ambient tribracket. As an application, we enhance the tribracket counting invariant of knots and links using subtribracket polynomials and provide examples to demonstrate that this enhancement is proper.
105 - Jose Ceniceros , Sam Nelson 2020
We bring cocycle enhancement theory to the case of psyquandles. Analogously to our previous work on virtual biquandle cocycle enhancements, we define enhancements of the psyquandle counting invariant via pairs of a biquandle 2-cocycle and a new funct ion satisfying some conditions. As an application we define new single-variable and two-variable polynomial invariants of oriented pseudoknots and singular knots and links. We provide examples to show that the new invariants are proper enhancements of the counting invariant are are not determined by the Jablan polynomial.
119 - Jieon Kim , Sam Nelson , Minju Seo 2020
Quandle coloring quivers are directed graph-valued invariants of oriented knots and links, defined using a choice of finite quandle $X$ and set $Ssubsetmathrm{Hom}(X,X)$ of endomorphisms. From a quandle coloring quiver, a polynomial knot invariant kn own as the textit{in-degree quiver polynomial} is defined. We consider quandle coloring quiver invariants for oriented surface-links, represented by marked graph diagrams. We provide example computations for all oriented surface-links with ch-index up to 10 for choices of quandles and endomorphisms.
We introduce algebraic structures known as psybrackets and use them to define invariants of pseudoknots and singular knots and links. Psybrackets are Niebrzydowski tribrackets with additional structure inspired by the Reidemeister moves for pseudokno ts and singular knots. Examples and computations are provided.
We enhance the quandle coloring quiver invariant of oriented knots and links with quandle modules. This results in a two-variable polynomial invariant with specializes to the previous quandle module polynomial invariant as well as to the quandle coun ting invariant. We provide example computations to show that the enhancement is proper in the sense that it distinguishes knots and links with the same quandle module polynomial.
We introduce textit{Kaestner brackets}, a generalization of biquandle brackets to the case of parity biquandles. This infinite set of quantum enhancements of the biquandle counting invariant for oriented virtual knots and links includes the classical quantum invariants, the quandle and biquandle $2$-cocycle invariants and the classical biquandle brackets as special cases, coinciding with them for oriented classical knots and links but defining generally stronger invariants for oriented virtual knots and links. We provide examples to illustrate the computation of the new invariant and to show that it is stronger than the classical biquandle bracket invariant for virtual knots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا