ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed study of the iron content of the core of the high-redshift cluster WARPJ1415.1+3612 (z=1.03). By comparing the central Fe mass excess observed in this system, M_Fe^exc = (1.67 +/- 0.40) x 10^9 M_sun, with those measured in local cool-core systems, we infer that the bulk of the mass excess was already in place at z=1, when the age of the Universe was about half of what it is today. Our measures point to an early and intense period of star formation most likely associated with the formation of the BCG. Indeed, in the case of the power-law delay time distribution with slope -1, which reproduces the data of WARPJ1415.1+3612 best, half of the supernovae explode within 0.4 Gyr of the formation of the BCG. Finally, while for local cool-core clusters the Fe distribution is broader than the near infrared light distribution of the BCG, in WARPJ1415.1+3612 the two distributions are consistent, indicating that the process responsible for broadening the Fe distribution in local systems has not yet started in this distant cluster.
431 - S. De Grandi , S. Molendi 2009
We use XMM-Newton data to carry out a detailed study of the Si, Fe and Ni abundances in the cool cores of a representative sample of 26 local clusters. We have performed a careful evaluation of the systematic uncertainties related to the instruments, the plasma codes and the spectral modeling finding that the major source of uncertainty is in the plasma codes. Our Si, Fe, Ni, Si/Fe and Ni/Fe distributions feature only moderate spreads (from 20% to 30%) around their mean values strongly suggesting similar enrichment processes at work in all our cluster cores. Our sample averaged Si/Fe ratio is comparable to those measured in samples of groups and high luminosity ellipticals implying that the enrichment process in ellipticals, dominant galaxies in groups and BCGs in clusters is quite similar. Although our Si/Fe and Ni/Fe abundance ratios are fairly well constrained, the large uncertainties in the supernovae yields prevent us from making a firm assessment of the relative contribution of type Ia and core-collapsed supernovae to the enrichment process. All that can really be said with some certainty is that both contribute to the enrichment of cluster cores.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا