ترغب بنشر مسار تعليمي؟ اضغط هنا

This is a collection of notes on embedding problems for 3-manifolds. The main question explored is `which 3-manifolds embed smoothly in the 4-sphere? The terrain of exploration is the Burton/Martelli/Matveev/Petronio census of triangulated prime clos ed 3-manifolds built from 11 or less tetrahedra. There are 13766 manifolds in the census, of which 13400 are orientable. Of the 13400 orientable manifolds, only 149 of them have hyperbolic torsion linking forms and are thus candidates for embedability in the 4-sphere. The majority of this paper is devoted to the embedding problem for these 149 manifolds. At present 41 are known to embed. Among the remaining manifolds, embeddings into homotopy 4-spheres are constructed for 4. 67 manifolds are known to not embed in the 4-sphere. This leaves 37 unresolved cases, of which only 3 are geometric manifolds i.e. having a trivial JSJ-decomposition.
The musical realm is a promising area in which to expect to find nontrivial topological structures. This paper describes several kinds of metrics on musical data, and explores the implications of these metrics in two ways: via techniques of classical topology where the metric space of all-possible musical data can be described explicitly, and via modern data-driven ideas of persistent homology which calculates the Betti-number bar-codes of individual musical works. Both analyses are able to recover three well known topological structures in music: the circle of notes (octave-reduced scalar structures), the circle of fifths, and the rhythmic repetition of timelines. Applications to a variety of musical works (for example, folk music in the form of standard MIDI files) are presented, and the bar codes show many interesting features. Examples show that individual pieces may span the complete space (in which case the classical and the data-driven analyses agree), or they may span only part of the space.
67 - Ryan Budney 2013
This paper gives a combinatorial description of spin and spin^c-structures on triangulated PL-manifolds of arbitrary dimension. These formulations of spin and spin^c-structures are established primarily for the purpose of aiding in computations. The novelty of the approach is we rely heavily on the naturality of binary symmetric groups to avoid lengthy explicit constructions of smoothings of PL-manifolds.
We show that one of the Cappell-Shaneson knot complements admits an extraordinarily small triangulation, containing only two 4-dimensional simplices.
202 - Ryan Budney 2010
A new topological operad is introduced, called the splicing operad. This operad acts on a broad class of spaces of self-embeddings N --> N where N is a manifold. The action of this operad on EC(j,M) (self embeddings R^j x M --> R^j x M with support i n I^j x M) is an extension of the action of the operad of (j+1)-cubes on this space. Moreover the action of the splicing operad encodes Larry Siebenmanns splicing construction for knots in S^3 in the j=1, M=D^2 case. The space of long knots in R^3 (denoted K_{3,1}) was shown to be a free 2-cubes object with free generating subspace P, the subspace of long knots that are prime with respect to the connect-sum operation. One of the main results of this paper is that K_{3,1} is free with respect to the splicing operad action, but the free generating space is the much `smaller space of torus and hyperbolic knots TH subset K_{3,1}. Moreover, the splicing operad for K_{3,1} has a `simple homotopy-type as an operad.
We show that if a co-dimension two knot is deform-spun from a lower-dimensional co-dimension 2 knot, there are constraints on the Alexander polynomials. In particular this shows, for all n, that not all co-dimension 2 knots in S^n are deform-spun from knots in S^{n-1}.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا