ترغب بنشر مسار تعليمي؟ اضغط هنا

Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3--1.5 keV band, allowing for unprecedented dia gnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. Each grating will be aligned such that the diffracted spectra overlap at the focal plane. Misalignments will degrade both spectral resolution and effective area. In this paper we present an analytical formulation of alignment tolerances that define grating orientations in all six degrees of freedom. We verify our analytical results with raytrace simulations to fully explore the alignment parameter space. We also investigate the effect of misalignments on diffraction efficiency.
We use simultaneous Swift and RXTE observations of the black hole binary GX 339-4 to measure the inner radius of its accretion disk in the hard state down to 0.4% L_{Edd} via modeling of the thermal disk emission and the relativistically broadened ir on line. For the luminosity range covered in this work, our results rule out a significantly truncated disk at 100-1000 R_g as predicted by the advection-dominated accretion flow paradigm. The measurements depend strongly on the assumed emission geometry, with most results providing no clear picture of radius evolution. If the inclination is constrained to roughly 20 degrees, however, the measurements based on the thermal disk emission suggest a mildly receding disk at a luminosity of 0.4% L_{Edd}. The iron abundance varies between roughly 1-2 solar abundances, with the i=20 degrees results indicating a negative correlation with luminosity, though this is likely due to a change in disk illumination geometry.
A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90 degree angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 micron thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا