ترغب بنشر مسار تعليمي؟ اضغط هنا

Many data-analysis problems involve large dense matrices that describe the covariance of stationary noise processes; the computational cost of inverting these matrices, or equivalently of solving linear systems that contain them, is often a practical limit for the analysis. We describe two general, practical, and accurate methods to approximate stationary covariance matrices as low-rank matrix products featuring carefully chosen spectral components. These methods can be used to greatly accelerate data-analysis methods in many contexts, such as the Bayesian and generalized-least-squares analysis of pulsar-timing residuals.
In this work we review the application of the theory of Gaussian processes to the modeling of noise in pulsar-timing data analysis, and we derive various useful and optimized representations for the likelihood expressions that are needed in Bayesian inference on pulsar-timing-array datasets. The resulting viewpoint and formalism lead us to two improved parameter-sampling schemes inspired by Gibbs sampling. The new schemes have vastly lower chain autocorrelation lengths than the Markov Chain Monte Carlo methods currently used in pulsar-timing data analysis, potentially speeding up Bayesian inference by orders of magnitude. The new schemes can be used for a full-noise-model analysis of the large datasets assembled by the International Pulsar Timing Array collaboration, which present a serious computational challenge to existing methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا