ترغب بنشر مسار تعليمي؟ اضغط هنا

We have used new deep observations of the Coma cluster from GALEX to identify 13 star-forming galaxies with asymmetric morphologies in the ultraviolet. Aided by optical broad-band and H-alpha imaging, we interpret the asymmetric features as being due to star formation within gas stripped from the galaxies by interaction with the cluster environment. The selected objects display a range of structures from broad fan-shaped systems of filaments and knots (`jellyfish) to narrower and smoother tails extending up to 100 kpc in length. Some of the features have been discussed previously in the literature, while others are newly identified here. As an ensemble, the candidate stripping events are located closer to the cluster centre than other star-forming galaxies; their radial distribution is similar to that of all cluster members, dominated by passive galaxies. The fraction of blue galaxies which are undergoing stripping falls from 40% in the central 500 kpc, to less than 5% beyond 1 Mpc. We find that tails pointing away from (i.e. galaxies moving towards) the cluster centre are strongly favoured (11/13 cases). From the small number of `outgoing galaxies with stripping signatures we conclude that the stripping events occur primarily on first passage towards the cluster centre, and are short-lived compared to the cluster crossing time. Using infall trajectories from simulations, the observed fraction of blue galaxies undergoing stripping can be reproduced if the events are triggered at a threshold radius of ~1 Mpc and detectable for ~500 Myr. HST images are available for two galaxies from our sample and reveal compact blue knots coincident with UV and H-alpha emission, apparently forming stars within the stripped material. Our results confirm that stripping of gas from infalling galaxies, and associated star formation in the stripped material, is a widespread phenomenon in rich clusters.
We analyse the abundance ratios of the light elements Mg, Ca, C and N, relative to Fe, for 147 red-sequence galaxies in the Coma cluster and the Shapley Supercluster. The sample covers a six-magnitude range in luminosity, from giant ellipticals to dw arfs at M^*+4. We exploit the wide mass range to investigate systematic trends in the abundance ratios Mg/Fe, Ca/Fe, C/Fe and N/Fe. We find that each of these ratios can be well modelled using two-parameter relations of the form [X/Fe] = a0 + a1 log sigma + a2 [Fe/H], where sigma is the velocity dispersion. Analysing these X-planes reveals new structure in the abundance patterns, beyond the traditional one-parameter (e.g. Mg/Fe-sigma) correlations. The X-planes for the alpha elements, Mg and Ca, indicate a positive correlation with velocity dispersion, and simultaneously an anti-correlation with Fe/H (i.e. a1>0 and a2<0). Taking both effects into account dramatically reduces the scatter, compared to the traditional X/Fe-sigma relations. For C and N, a similar correlation with velocity dispersion is recovered, but there is no additional dependence on Fe/H (i.e. a1>0 and a2~0). The explicit dependence of X/Fe on two parameters is evidence that at least two physical processes are at work in setting the abundance patterns. The Fe/H dependence of Mg/Fe and Ca/Fe, at fixed sigma, may result from different durations of star formation, from galaxy to galaxy. The absence of corresponding Fe/H dependence for C and N is consistent with these elements being generated in lower-mass stars. The increase with sigma, at fixed Fe/H, is similar for elements Mg, C and N, and slightly shallower for Ca. This pattern of trends cannot be explained solely by a systematic variation of star-formation time-scale with sigma.
We investigate the stellar populations in a sample of 89 faint (M*+2 to M*+4) red galaxies in the Coma cluster, using high S/N spectroscopy from the MMT. Our sample is drawn from two 1-degree fields, one centred on the cluster core and the other loca ted a degree to the south west of the cluster centre. For a comparison sample we use published high-S/N data for red-sequence galaxies in the Shapley Supercluster. We use state-of-the-art stellar population models to infer the SSP-equivalent age and metallicity (Fe/H) for each galaxy, as well as the abundances of the light elements Mg, Ca, C and N. The ages of the Coma dwarfs span a wide range from <2 Gyr to >10 Gyr, with a strong environmental dependence. The oldest galaxies are found only in the core, while most of the galaxies in the outer south-west field have ages ~3 Gyr. The galaxies have a metallicity range -1.0 < [Fe/H] < 0.0, and follow the same age-metallicity-mass plane as high-mass galaxies, but with increased intrinsic scatter. The Mg/Fe abundance ratios are on average slightly super-solar, and span a range -0.1 < [Mg/Fe] < +0.4. The highest Mg enhancements are found only in the cluster core, while solar ratios predominate in the outskirts. Depending on the assumed star-formation history (quenched versus burst-dominated), the number of dwarf galaxies on the red sequence in the Coma core has doubled since z~0.4-0.7. These estimates bracket the red-sequence growth timescales found by direct studies of distant clusters. In the south-west field, the red sequence was established only at z~0.1-0.2. Our observations confirm previous indications of very recently quenched star formation in this part of the cluster. Our results support the picture in which much of the cluster passive dwarf population was generated by environment-driven transformation of infalling late-type galaxies.
We analyse the stellar populations of 75 red-sequence dwarf galaxies in the Coma cluster, based on high signal-to-noise spectroscopy from the 6.5m MMT. The sample covers a luminosity range 3-4 magnitudes below M*, in the cluster core and in a field c entred 1 deg to the south-west. We find a strong dependence of the absorption line strengths with location in the cluster. Galaxies further from the cluster centre have stronger Balmer lines than inner-field galaxies of the same luminosity. The magnesium lines are weaker at large radius, while the iron lines are not correlated with radius. Converting the line strengths into estimates of stellar age, metallicity and abundance ratios, we find the gradients are driven by variations in age (>6 sigma significance) and in the iron abundance Fe/H (~2.7 sigma significance). The light element (Mg, C, N, Ca) abundances are almost independent of radius. At radius of 0.4-1.3 degree (~0.3-1.0x the virial radius), dwarf galaxies have ages ~3.8 Gyr on average, compared to ~6 Gyr near the cluster centre. The outer dwarfs are also ~50% more iron-enriched, at given luminosity. Our results confirm earlier indications that the ages of red-sequence galaxies depend on location within clusters, and in Coma in particular. The exceptionally strong trends found here suggest that dwarf galaxies are especially susceptible to environmental quenching, and/or that the south-west part of Coma is a particularly clear example of recent quenching in an infalling subcluster.
We present new optical spectroscopy for 342 R<18 galaxies in the Shapley Supercluster obtained with the AAOmega facility at the Anglo-Australian Telescope. We describe the observations and measurements of central velocity dispersion, emission line eq uivalent widths and absorption line indices. The distinguishing characteristic of the survey is its coverage of a very wide baseline in velocity dispersion (30-300 km/s), while achieving high signal-to-noise ratio throughout (median 60 per Ang). Significant emission at H-alpha was detected in ~20 per cent of red-sequence Shapley members. Using line-ratio diagnostics, we find that the emission is LINER-like at high luminosity, but driven by star-formation in low-luminosity galaxies. We use Lick indices to characterise the absorption spectra. We define a subset of galaxies with very low emission contamination, and fit the index-sigma relations for this subset. Comparing the index-sigma slopes against predictions from single-burst stellar population models, we infer the scaling relations of age, total metallicity, [Z/H], and alpha-element abundance ratio, [a/Fe]. To reproduce the observed index-sigma slopes, all three parameters must increase with increasing velocity dispersion. Specifically, we recover: Age propto sigma^0.52+/-0.10, Z/H propto sigma^0.34+/-0.07, and a/Fe propto sigma^0.23+/-0.06 (error reflects systematic effects), derived over a decade baseline in velocity dispersion. The recovered age-sigma relation is shown to be consistent with the observed evolution in the giant-to-dwarf galaxy ratio in clusters at redshifts z=0.4-0.8. A companion paper will analyse the distribution of age, [Z/H] and [a/Fe] for individual galaxies. (Abridged.)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا