ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the electromagnetic contribution to the charge symmetry breaking in the octet baryon masses using a subtracted dispersion relation based on the Cottingham formula. For the proton-neutron mass splitting we report a minor revision of the rec ent analysis of Walker-Loud, Carlson and Miller. For the electromagnetic structure of the hyperons we constrain our analysis, where possible, by a combination of lattice QCD and SU(3) symmetry breaking estimates. The results for the baryon mass splittings are found to be compatible with recent lattice QCD+QED determinations. The uncertainties in the dispersive analysis are dominated by the lack of knowledge of the hyperon inelastic structure.
70 - R. D. Young 2013
The strange quark scalar content plays an important role in both the description of nucleon structure and in the determination of dark matter direct detection cross sections. As a measure of the strange-quark contribution to the nucleon mass, the str ange-quark sigma term (sigma_s) provides important insight into the nature of mass generation in QCD. The phenomenological determination of sigma_s exhibits a wide range of variation, with values suggesting that the strange quark contributes anywhere between 0 and more than 30% of the nucleon mass. In the context of dark matter searches, coupled with relatively large Higgs coupling to strangeness, this variation dominates the uncertainty in predicted cross sections for a large class of dark matter models. Here we report on the recent results in lattice QCD, which are now giving a far more precise determination of sigma_s than can be inferred from phenomenology. As a consequence, the lattice determinations of sigma_s can now dramatically reduce the uncertainty in dark matter cross sections associated with the hadronic matrix elements.
44 - Ross D. Young 2011
We report on recent results on nucleon structure that are helping guide the search for new physics at the precision frontier. Results discussed include the electroweak elastic form factors, charge symmetry breaking in parton distributions and the strangeness content of the nucleon.
50 - Ross D. Young 2010
We present a discourse on the stages of discovery that have led to a deeper understanding of the role played by strange quarks in the structure of the nucleon.
It has proven a significant challenge to experiment and phenomenology to extract precise values of the nucleon sigma terms. This difficulty opens the window for lattice QCD simulations to lead the field in resolving this aspect of nucleon structure. Here we report on recent advances in the extraction of nucleon sigma terms in lattice QCD. In particular, the strangeness component is now being resolved to a precision that far surpasses best phenomenological estimates.
81 - R. D. Young 2009
We report on a recent chiral extrapolation, based on an SU(3) framework, of octet baryon masses calculated in 2+1-flavour lattice QCD. Here we further clarify the form of the extrapolation, the estimation of the infinite-volume limit, the extracted l ow-energy constants and the corrections in the strange-quark mass.
In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The p recision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the Standard Model. Consequently, this result improves the lower-bound on the scale of relevant new physics to ~1 TeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا