ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate cross-relaxation interactions between Tm and Al in Tm:YAG using two optical methods: spectral holeburning and stimulated echoes. These interactions lead to a reduction in the hyperfine lifetime at magnetic fields that bring the Tm hype rfine transition into resonance with an Al transition. We develop models for measured echo decay curves and holeburning spectra near a resonance, which are used to show that the Tm-Al interaction has a resonance width of 10~kHz and reduces the hyperfine lifetime to 0.5 ms. The antihole structure is consistent with an interaction dominated by the Al nearest neighbors at 3.0 Angstroms, with some contribution from the next nearest neighbors at 3.6 Angstroms.
We describe an experimental technique for associating the satellite lines in a rare earth optical spectrum caused by a defect with the rare earth ions in crystal sites around that defect. This method involves measuring the hyperfine splitting caused by a magnetic dipole-dipole interaction between host ions and a magnetic defect. The method was applied to Ce3+:EuCl3.6H2O to assign 13 of the outermost 22 satellite lines to sites. The assignments show that the optical shift of a satellite line is loosely dependent on the distance to the dopant. The interaction between host and dopant ions is purely dipole-dipole at distances greater than 7 Angstroms, with an additional contribution, likely superexchange, at distances less than 7 Angstroms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا