ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the query complexity of computing a function f:{0,1}^n-->R_+ in expectation. This requires the algorithm on input x to output a nonnegative random variable whose expectation equals f(x), using as few queries to the input x as possible. We ex actly characterize both the randomized and the quantum query complexity by two polynomial degrees, the nonnegative literal degree and the sum-of-squares degree, respectively. We observe that the quantum complexity can be unboundedly smaller than the classical complexity for some functions, but can be at most polynomially smaller for functions with range {0,1}. These query complexities relate to (and are motivated by) the extension complexity of polytopes. The linear extension complexity of a polytope is characterized by the randomized communication complexity of computing its slack matrix in expectation, and the semidefinite (psd) extension complexity is characterized by the analogous quantum model. Since query complexity can be used to upper bound communication complexity of related functions, we can derive some upper bounds on psd extension complexity by constructing efficient quantum query algorithms. As an example we give an exponentially-close entrywise approximation of the slack matrix of the perfect matching polytope with psd-rank only 2^{n^{1/2+epsilon}}. Finally, we show there is a precise sense in which randomized/quantum query complexity in expectation corresponds to the Sherali-Adams and Lasserre hierarchies, respectively.
202 - Urmila Mahadev 2014
We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using postselection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We give optimal (up to constant factors) quantum algorithms with postselection for the Majority function, slightly improving upon an earlier algorithm of Aaronson. Finally we show how Newmans classic theorem about low-degree rational approximation of the absolute-value function follows from these algorithms.
68 - Andris Ambainis 2012
We show that almost all n-bit Boolean functions have bounded-error quantum query complexity at least n/2, up to lower-order terms. This improves over an earlier n/4 lower bound of Ambainis, and shows that van Dams oracle interrogation is essentially optimal for almost all functions. Our proof uses the fact that the acceptance probability of a T-query algorithm can be written as the sum of squares of degree-T polynomials.
98 - Harry Buhrman 2009
Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. In this review we study the information counterpart of computing. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.
77 - Dmitry Gavinsky 2008
We study the simultaneous message passing (SMP) model of communication complexity, for the case where one party is quantum and the other is classical. We show that in an SMP protocol that computes some function with the first party sending q qubits a nd the second sending c classical bits, the quantum message can be replaced by a randomized message of O(qc) classical bits, as well as by a deterministic message of O(q c log q) classical bits. Our proofs rely heavily on earlier results due to Scott Aaronson. In particular, our results imply that quantum-classical protocols need to send Omega(sqrt{n/log n}) bits/qubits to compute Equality on n-bit strings, and hence are not significantly better than classical-classical protocols (and are much worse than quantum-quantum protocols such as quantum fingerprinting). This essentially answers a recent question of Wim van Dam. Our results also imply, more generally, that there are no superpolynomial separations between quantum-classical and classical-classical SMP protocols for functional problems. This contrasts with the situation for relational problems, where exponential gaps between quantum-classical and classical-classical SMP protocols are known. We show that this surprising situation cannot arise in purely classical models: there, an exponential separation for a relational problem can be converted into an exponential separation for a functional problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا