ترغب بنشر مسار تعليمي؟ اضغط هنا

We construct an explicit renormalization group (RG) transformation for Levin and Wens string-net models on a hexagonal lattice. The transformation leaves invariant the ground-state fixed-point wave function of the string-net condensed phase. Our cons truction also produces an exact representation of the wave function in terms of the multi-scale entanglement renormalization ansatz (MERA). This sets the stage for efficient numerical simulations of string-net models using MERA algorithms. It also provides an explicit quantum circuit to prepare the string-net ground-state wave function using a quantum computer.
We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for any ar bitrary input, it is sufficient to consider the special case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. A similar statement holds for more general channels which are covariant with respect to the action of an arbitrary finite or locally compact group. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained by proofs relying on the exponential de Finetti theorem [Renner, Nature Physics 3,645(2007)].
We investigate permutation-invariant continuous variable quantum states and their covariance matrices. We provide a complete characterization of the latter with respect to permutation-invariance, exchangeability and representing convex combinations o f tensor power states. On the level of the respective density operators this leads to necessary criteria for all these properties which become necessary and sufficient for Gaussian states. For these we use the derived results to provide de Finetti-type theorems for various distance measures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا