ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the effects of continuous measurement of the field mode during the collapse and revival of spin Schr{o}dinger cat states in the Tavis-Cummings model of N qubits (two-level quantum systems) coupled to a field mode. We show that a compromise b etween relatively weak and relatively strong continuous measurement will not completely destroy the collapse and revival dynamics while still providing enough signal-to-noise resolution to identify the signatures of the process in the measurement record. This type of measurement would in principle allow the verification of the occurrence of the collapse and revival of a spin Schr{o}dinger cat state.
We propose a simple feedback-control scheme for adiabatic quantum computation with superconducting flux qubits. The proposed method makes use of existing on-chip hardware to monitor the ground-state curvature, which is then used to control the comput ation speed to maximize the success probability. We show that this scheme can provide a polynomial speed-up in performance and that it is possible to choose a suitable set of feedback-control parameters for an arbitrary problem Hamiltonian.
We investigate the symmetry breaking role of noise in adiabatic quantum computing using the example of the CNOT gate. In particular, we analyse situations where the choice of initial configuration leads to symmetries in the Hamiltonian and degeneraci es in the spectrum. We show that, in these situations, there exists an optimal level of noise that maximises the success probability and the fidelity of the final state. The effects of an artificial noise source with a time-dependent amplitude are also explored and it is found that such a scheme would offer a considerable performance enhancement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا