ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse 511 keV line emission, from the annihilation of cold positrons, has been observed in the direction of the Galactic Centre for more than 30 years. The latest high-resolution maps of this emission produced by the SPI instrument on INTEGRAL sugg est at least one component of the emission is spatially coincident with the distribution of ~70 luminous, low-mass X-ray binaries detected in the soft gamma-ray band. The X-ray band, however, is generally a more sensitive probe of X-ray binary populations. Recent X-ray surveys of the Galactic Centre have discovered a much larger population (>4000) of faint, hard X-ray point sources. We investigate the possibility that the positrons observed in the direction of the Galactic Centre originate in pair-dominated jets generated by this population of fainter accretion-powered X-ray binaries. We also consider briefly whether such sources could account for unexplained diffuse emission associated with the Galactic Centre in the microwave (the WMAP `haze) and at other wavelengths. Finally, we point out several unresolved problems in associating Galactic Centre 511 keV emission with the brightest X-ray binaries.
I describe the IR and X-ray observational campaign we have undertaken for the purpose of determining the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center (GC). Data obtained for this project includes a deep Chandra survey of the Galactic Bulge; deep, high resolution IR imaging from VLT/ISAAC, CTIO/ISPI, and the UKIDSS Galactic Plane Survey (GPS); and IR spectroscopy from VLT/ISAAC and IRTF/SpeX. By cross-correlating the GC X-ray imaging from Chandra with our IR surveys, we identify candidate counterparts to the X-ray sources via astrometry. Using a detailed IR extinction map, we are deriving magnitudes and colors for all the candidates. Having thus established a target list, we will use the multi-object IR spectrograph FLAMINGOS-2 on Gemini-South to carry out a spectroscopic survey of the candidate counterparts, to search for emission line signatures which are a hallmark of accreting binaries. By determining the nature of these X-ray sources, this FLAMINGOS-2 Galactic Center Survey will have a dramatic impact on our knowledge of the Galactic accreting binary population.
165 - Valerie J. Mikles 2008
We present X-ray and infrared observations of the X-ray source CXOGC J174536.1-285638. Previous observations suggest that this source may be an accreting binary with a high-mass donor (HMXB) or a colliding wind binary (CWB). Based on the Chandra and XMM-Newton light curve, we have found an apparent 189+/-6 day periodicity with better than 99.997% confidence. We discuss several possible causes of this periodicity, including both orbital and superorbital interpretations. We explore in detail the possibility that the X-ray modulation is related to an orbital period and discuss the implications for two scenarios; one in which the variability is caused by obscuration of the X-ray source by a stellar wind, and the other in which it is caused by an eclipse of the X-ray source. We find that in the first case, CXOGC J174536.1-285638 is consistent with both CWB and HMXB interpretations, but in the second, CXOGC J174536.1-285638 is more likely a HMXB.
Upon commissioning on Gemini South, FLAMINGOS-2 will be one of the most powerful wide-field near-infrared imagers and multi-object spectrographs ever built for use on 8-meter-class telescopes. In order to take best advantage of the strengths of FLAMI NGOS-2 early in its life cycle, the instrument team has proposed to use 21 nights of Gemini guaranteed time in 3 surveys -- the FLAMINGOS-2 Early Science Surveys (F2ESS). The F2ESS will encompass 3 corresponding science themes -- the Galactic Center, galaxy evolution, and star formation. In this paper, I review the design performance and status of FLAMINGOS-2, and describe the planned FLAMINGOS-2 Galactic Center Survey.
FLAMINGOS-2 (PI: S. Eikenberry) is a $5M facility-class near-infrared (1-2.5 micron) multi-object spectrometer and wide-field imager being built at the University of Florida for Gemini South. Here we highlight the capabilities of FLAMINGOS-2, as it w ill be an ideal instrument for surveying the accreting binary population in the Galactic Center.
I describe the IR and X-ray campaign we have undertaken to determine the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center. These results will provide the input to the FLAMINGOS-2 Galactic Center Survey (F2GCS). With FLAMINGOS-2s multi-object IR spectrograph we will obtain 1000s of IR spectra of candidate X-ray source counterparts, allowing us to efficiently identify the nature of these sources, and thus dramatically increase the number of known X-ray binaries and CVs in the Milky Way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا