ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - R. Baptista 2011
We report results of the eclipse mapping analysis of an ensemble of light curves of HT Cas. The fast response of the white dwarf to the increase in mass transfer rate, the expansion rate of the accretion disc at the same time, and the relative amplit ude of the high-frequency flickering indicate that the quiescent disc of HT Has has high viscosity, alpha ~ 0.3-0.7. This is in marked disagreement with the disc-instability model and implies that the outbursts of HT Cas are caused by bursts of enhanced mass-transfer rate from its donor star.
87 - R. Baptista 2011
We report a time-lapse eclipse mapping analysis of B-band time-series of the nova-like variable UU Aqr along a typical stunted outburst in 2002 August. Disc asymmetries rotating in the prograde sense in the eclipse maps are interpreted as a precessin g elliptical disc with enhanced emission at periastron. From the disc expansion velocity a disc viscosity alpha_{hot}= 0.2 is inferred. The outburst starts with a 10-fold increase in uneclipsed light, probably arising in an enhanced disc wind; the disc response is delayed by 2 d. The results are inconsistent with the disc instability model and suggest that the stunted outburst of UU Aqr are the response of its viscous accretion disc to enhanced mass-transfer events.
We report the analysis of a uniform sample of 31 light curves of the nova-like variable UU Aqr with eclipse mapping techniques. The data were combined to derive eclipse maps of the average steady-light component, the long-term brightness changes, and low- and high-frequency flickering components. The long-term variability responsible for the low and high brightness states is explained in terms of the response of a viscous disk to changes of 20-50 per cent in the mass transfer rate from the donor star. Low- and high-frequency flickering maps are dominated by emission from two asymmetric arcs reminiscent of those seen in the outbursting dwarf nova IP Peg, and are similarly interpreted as manifestation of a tidally-induced spiral shock wave in the outer regions of a large accretion disk. The asymmetric arcs are also seen in the map of the steady-light aside of the broad brightness distribution of a roughly steady-state disk. The arcs account for 25 per cent of the steady-light flux and are a long-lasting feature in the accretion disk of UU Aqr. We infer an opening angle of 10+/-3 degrees for the spiral arcs. The results suggest that the flickering in UU Aqr is caused by turbulence generated after the collision of disk gas with the density-enhanced spiral wave in the accretion disk.
97 - R. Baptista 2007
We follow the changes in the structure of the accretion disk of the dwarf nova V2051 Oph along two separate outbursts in order to investigate the causes of its recurrent outbursts. We apply eclipse mapping techniques to a set of light curves covering a normal (July 2000) and a low-amplitude (August 2002) outburst to derive maps of the disk surface brightness distribution at different phases along the outburst cycles. The sequence of eclipse maps of the 2000 July outburst reveal that the disk shrinks at outburst onset while an uneclipsed component of 13 per cent of the total light develops. The derived radial intensity distributions suggest the presence of an outward-moving heating wave during rise and of an inward-moving cooling wave during decline. The inferred speed of the outward-moving heating wave is ~ 1.6 km/s, while the speed of the cooling wave is a fraction of that. A comparison of the measured cooling wave velocity on consecutive nights indicates that the cooling wave accelerates as it travels towards disk center, in contradiction with the prediction of the disk instability model. From the inferred speed of the heating wave we derive a viscosity parameter alpha_{hot} ~ 0.13, comparable to the measured viscosity parameter in quiescence. The 2002 August outburst had lower amplitude (Delta B ~ 0.8 mag) and the disk at outburst maximum was smaller than on 2000 July. For an assumed distance of 92 pc, we find that along both outbursts the disk brightness temperatures remain below the minimum expected according to the disk instability model. The results suggest that the outbursts of V2051 Oph are caused by bursts of increased mass transfer from the mass-donor star.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا