ترغب بنشر مسار تعليمي؟ اضغط هنا

During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earths atmosp here as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, a new monitoring quantity, the Cherenkov transparency coefficient, has been developed and will be presented here. This quantity is independent of hardware changes in the detector and, therefore, isolates atmospheric factors that can impact the performance of the instrument, and in particular the spectral results. Its positive correlation with independent measurements of the atmospheric optical depth (AOD) retrieved from data of the Multi-angle Imaging SpectroRadiometer (MISR) on board of the Terra NASAs satellite is also presented here.
Observations of the Galactic Plane performed by the H.E.S.S. telescope array have revealed a significant excess at very-high-energies (VHE; E>0.1 TeV) from the direction of PSR J1459-60, a rather old gamma-ray pulsar (64 kyr) with a spindown energy o f ~10^36 erg/s, discovered by the Fermi/LAT satellite in high-energy (HE) gamma-rays. The X-ray pulsar counterpart has been recently detected using the Suzaku satellite. In this contribution, we present the discovery of a new VHE gamma-ray source, including morphological and spectral analyses. Its association with the gamma-ray pulsar in a PWN scenario will be discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا