ترغب بنشر مسار تعليمي؟ اضغط هنا

The aim of this paper is to examine the effects of the horizontal turbulence in differentially rotating stars on the GSF instability and apply our results to pre-supernova models. For this purpose we derive the expression for the GSF instability with account of the thermal transport and smoothing of the mu-gradient by the horizontal turbulence. We apply the new expressions in numerical models of a 20 solar mass star. We show that if N^2_{Omega} < 0 the Rayleigh-Taylor instability cannot be killed by the stabilizing thermal and mu-gradients, so that the GSF instability is always there and we derive the corresponding diffusion coefficient. The GSF instability grows towards the very latest stages of stellar evolution. Close to the deep convective zones in pre-supernova stages, the transport coefficient of elements and angular momentum by the GSF instability can very locally be larger than the shear instability and even as large as the thermal diffusivity. However the zones over which the GSF instability is acting are extremely narrow and there is not enough time left before the supernova explosion for a significant mixing to occur. Thus, even when the inhibiting effects of the mu-gradient are reduced by the horizontal turbulence, the GSF instability remains insignificant for the evolution. We conclude that the GSF instability in pre-supernova stages cannot be held responsible for the relatively low rotation rate of pulsars compared to the predictions of rotating star models.
83 - R. Hirschi 2008
Massive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this paper, we describe the strong impact of rota tion induced mixing and mass loss at very low $Z$. The strong mixing leads to a significant production of primary nitrogen 14, carbon 13 and neon 22. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z=0 for stars more massive than 60 solar masses. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and C12/C13. We calculated the weak s-process production induced by the primary neon 22 and obtain overproduction factors (relative to the initial composition, Z=1.e-6) between 100-1000 in the mass range 60-90.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا