ترغب بنشر مسار تعليمي؟ اضغط هنا

GRS 1915+105 is a prominent black hole system exhibiting variability over a wide range of time scales and its observed light curves have been classified into 12 temporal states. Here we undertake a complete analysis of these light curves from all the states using various quantifiers from nonlinear time series analysis, such as, the correlation dimension (D_2), the correlation entropy (K_2), singular value decomposition (SVD) and the multifractal spectrum ($f(alpha)$ spectrum). An important aspect of our analysis is that, for estimating these quantifiers, we use algorithmic schemes which we have proposed recently and tested successfully on synthetic as well as practical time series from various fields. Though the schemes are based on the conventional delay embedding technique, they are automated so that the above quantitative measures can be computed using conditions prescribed by the algorithm and without any intermediate subjective analysis. We show that nearly half of the 12 temporal states exhibit deviation from randomness and their complex temporal behavior could be approximated by a few (3 or 4) coupled ordinary nonlinear differential equations. These results could be important for a better understanding of the processes that generate the light curves and hence for modelling the temporal behavior of such complex systems. To our knowledge, this is the first complete analysis of an astrophysical object (let alone a black hole system) using various techniques from nonlinear dynamics.
139 - A. Senorita Devi 2008
We report variability of the X-ray source, X-7, in NGC 6946, during a 60 ksec Chandra observation when the count rate decreased by a factor of ~1.5 in ~5000 secs. Spectral fitting of the high and low count rate segments of the light curve reveal that the simplest and most probable interpretation is that the X-ray spectra are due to disk black body emission with an absorbing hydrogen column density equal to the Galactic value of 2.1 X 10^{21} cm^{-2}. During the variation, the inner disk temperature decreased from ~0.29 to ~0.26 keV while the inner disk radius remained constant at ~6 X 10^8 cm. This translates into a luminosity variation from 3.8 to 2.8 X 10^{39} ergs cm^{-2} sec^{-1} and a black hole mass of ~400 solar masses. More complicated models like assuming intrinsic absorption and/or the addition of a power-law component imply a higher luminosity and a larger black hole mass. Even if the emission is beamed by a factor of ~5, the size of the emitting region would be > 2.7 X 10^8 cm implying a black hole mass > 180 solar masses. Thus, these spectral results provide strong evidence that the mass of the black hole in this source is definitely > 100 solar masses and more probably ~400 solar masses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا