ترغب بنشر مسار تعليمي؟ اضغط هنا

With the assumptions of a quartic scalar field, finite energy of the scalar field in a volume, and vanishing radial component of 4-current at infinity, an exact static and spherically symmetric hairy black hole solution exists in the framework of Hor ndeski theory with parameter $Q$, which encompasses the Schwarzschild black hole ($Q=0$). We obtain the axially symmetric counterpart of this hairy solution, namely the rotating Horndeski black hole, which contains as a special case the Kerr black hole ($Q=0$). Interestingly, for a set of parameters ($M, a$, and $Q$), there exists an extremal value of the parameter $Q=Q_{e}$, which corresponds to an extremal black hole with degenerate horizons, while for $Q<Q_{e}$, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for $Q>Q_{e}$. We investigate the effect of the $Q$ on the rotating black hole spacetime geometry and analytically deduce corrections to the light deflection angle from the Kerr and nonrotating Horndeski gravity black hole values. For the S2 source star, we calculate the deflection angle for the Sgr A* model of rotating Horndeski gravity black hole for both prograde and retrograde photons and show that it is larger than the Kerr black hole value.
We investigate the gravitational settling of a long, model elastic filament in homogeneous isotropic turbulence. We show that the flow produces a strongly fluctuating settling velocity, whose mean is moderately enhanced over the still-fluid terminal velocity, and whose variance has a power-law dependence on the filaments weight but is surprisingly unaffected by its elasticity. In contrast, the tumbling of the filament is shown to be closely coupled to its stretching, and manifests as a Poisson process with a tumbling time that increases with the elastic relaxation time of the filament.
In this paper, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogene ous resources while respecting the local grid constraints on nodal voltages and lines ampacities. The framework consists of two algorithmic layers. In the first one (day-ahead scheduling), we determine an aggregated dispatch plan. In the second layer (real-time control), a distributed model predictive control (MPC) determines the active and reactive power set-points of the DERs so that their aggregated contribution tracks the dispatch plan while obeying to DERs operational constraints as well as the grids ones. The proposed framework is experimentally validated on a real-scale microgrid that reproduces the network specifications of the CIGRE microgrid benchmark system.
We present a theory for the interaction between motile particles in an elastic medium on a substrate, relying on two arguments: a moving particle creates a strikingly fore-aft asymmetric distortion in the elastic medium; this strain field reorients o ther particles. We show that this leads to sensing, attraction and pursuit, with a non-reciprocal character, between a pair of motile particles. We confirm the predicted distortion fields and non-mutual trail-following in our experiments and simulations on polar granular rods made motile by vibration, moving through a dense monolayer of beads in its crystalline phase. Our theory should be of relevance to the interaction of motile cells in the extracellular matrix or in a supported layer of gel or tissue.
The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary objects, modelled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions amongst inertial beads result in a non-trivial sampling of the flow, ranging from entrapment within vortices to preferential sampling of straining regions. This behavior is quantified as a function of inertia and elasticity and is shown to be very different from free, non-interacting heavy particles, as well as inertialess chains [Picardo et al., Phys. Rev. Lett. 121, 244501 (2018)]. In addition, by considering two limiting cases, of a heavy-headed and a uniformly-inertial chain, we illustrate the critical role played by the mass distribution of such extended objects in their turbulent transport.
The variation in the intensity of cosmic rays at small angular scales is attributed to the interstellar turbulence in the vicinity of the Solar system. We show that {a turbulent origin of the small-scale structures implies that} the morphology of the observed cosmic-ray intensity skymap varies with our location in the interstellar turbulence. The gyroradius of cosmic rays is shown to be the length scale associated with an observable change in the skymap over a radian angular scale. The extent to which the intensity mpo{at a certain} angular scale varies is proportional to the change in our location with a maximum change of about the amplitude of intensity variation at that scale in the existing skymap.} We suggest that for TeV cosmic rays a measurable variation could occur over a time scale of a decade due to the Earths motion through the interstellar medium, if interstellar turbulence persists down to the gyroradius, mpo{about $00 mumathrm{pc}$ for TeV-ish cosmic rays}. Observational evidence of the variability, or an absence of it, could provide a useful insight into the physical origin of the small-scale anisotropy.
This paper describes a two-layer control and coordination framework for distributed energy resources. The lower layer is a real-time model predictive control (MPC) executed at 10 s resolution to achieve fine tuning of a given energy set-point. The up per layer is a slower MPC coordination mechanism based on distributed optimization, and solved with the alternating direction method of multipliers (ADMM) at 5 minutes resolution. It is needed to coordinate the power flow among the controllable resources such that enough power is available in real-time to achieve a pre-established energy trajectory in the long term. Although the formulation is generic, it is developed for the case of a battery system and a curtailable PV facility to dispatch stochastic prosumption according to a trajectory at 5 minutes resolution established the day before the operation. The proposed method is experimentally validated in a real-life setup to dispatch the operation of a building with rooftop PV generation (i.e., 101 kW average load, 350 kW peak demand, 82 kW peak PV generation) by controlling a 560 kWh/720 kVA battery and a 13 kW peak curtailable PV facility.
50 - Rukmini Dey , Pradip Kumar , 2016
We give a different formulation for describing maximal surfaces in Lorentz-Minkowski space, $mathbb{L}^3$, using the identification of $mathbb L^3$ with $mathbb Ctimes mathbb R$. Further we give a different proof for the singular Bjorling problem for the case of closed real analytic null curve. As an application, we show the existence of maximal surface which contains a given curve and has a special singularity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا