ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to nu merical semigroups. This correspondence is shown to preserve the complete intersection property, and allows us to use some available algorithms to determine whether a given vanishing ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete intersection in terms of the Frobenius number and the generators of a numerical semigroup.
We show that the degree of a graded lattice ideal of dimension 1 is the order of the torsion subgroup of the quotient group of the lattice. This gives an efficient method to compute the degree of this type of lattice ideals.
For the family of graded lattice ideals of dimension 1, we establish a complete intersection criterion in algebraic and geometric terms. In positive characteristic, it is shown that all ideals of this family are binomial set theoretic complete inters ections. In characteristic zero, we show that an arbitrary lattice ideal which is a binomial set theoretic complete intersection is a complete intersection.
We compute the basic parameters (dimension, length, minimum distance) of affine evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive integers, we construct an evaluation code, over a degenerate torus, with pres cribed parameters. As an application of our results, we recover the formulas for the minimum distance of various families of evaluation codes.
Let K be a finite field and let X* be an affine algebraic toric set parameterized by monomials. We give an algebraic method, using Groebner bases, to compute the length and the dimension of C_X*(d), the parameterized affine code of degree d on the se t X*. If Y is the projective closure of X*, it is shown that C_X^*(d) has the same basic parameters that C_Y(d), the parameterized projective code on the set Y. If X* is an affine torus, we compute the basic parameters of C_X*(d). We show how to compute the vanishing ideals of X* and Y.
Let C be a clutter and let A be its incidence matrix. If the linear system x>=0;xA<=1 has the integer rounding property, we give a description of the canonical module and the a-invariant of certain normal subrings associated to C. If the clutter is a connected graph, we describe when the aforementioned linear system has the integer rounding property in combinatorial and algebraic terms using graph theory and the theory of Rees algebras. As a consequence we show that the extended Rees algebra of the edge ideal of a bipartite graph is Gorenstein if and only if the graph is unmixed.
Let C be a uniform clutter, i.e., all the edges of C have the same size, and let A be the incidence matrix of C. We denote the column vectors of A by v1,...,vq. The vertex covering number of C, denoted by g, is the smallest number of vertices in any minimal vertex cover of C. Under certain conditions we prove that C is vertex critical. If C satisfies the max-flow min-cut property, we prove that A diagonalizes over the integers to an identity matrix and that v1,...,vq is a Hilbert basis. It is shown that if C has a perfect matching such that C has the packing property and g=2, then A diagonalizes over the integers to an identity matrix. If A is a balanced matrix we prove that any regular triangulation of the cone generated by v1,...,vq is unimodular. Some examples are presented to show that our results only hold for uniform clutters. These results are closely related to certain algebraic properties, such as the normality or torsion freeness, of blowup algebras of edge ideals and to finitely generated abelian groups. They are also related to the theory of Grobner bases of toric ideals and to Ehrhart rings.
Let G be a simple graph and let J be its ideal of vertex covers. We give a graph theoretical description of the irreducible b-vertex covers of G, i.e., we describe the minimal generators of the symbolic Rees algebra of J. Then we study the irreducibl e b-vertex covers of the blocker of G, i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of G. We give a graph theoretical description of the irreducible binary b-vertex covers of the blocker of G. It is shown that they correspond to irreducible induced subgraphs of G. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of G. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible b-vertex covers of the blocker of G with high degree relative to the number of vertices of G.
The aim of this paper is to study integer rounding properties of various systems of linear inequalities to gain insight about the algebraic properties of Rees algebras of monomial ideals and monomial subrings. We study the normality and Gorenstein pr operty--as well as the canonical module and the a-invariant--of Rees algebras and subrings arising from systems with the integer rounding property. We relate the algebraic properties of Rees algebras and monomial subrings with integer rounding properties and present a duality theorem.
Let C be a uniform clutter and let I=I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cu t property) such that C is a minor of C1. For arbitrary edge ideals of clutters we prove that the normality property is closed under parallelizations. Then we show some applications to edge ideals and clutters which are related to a conjecture of Conforti and Cornuejols and to max-flow min-cut problems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا