ترغب بنشر مسار تعليمي؟ اضغط هنا

Four methods for determining the composition of low-level uranium- and thorium-chain surface contamination are presented. One method is the observation of Cherenkov light production in water. In two additional methods a position-sensitive proportiona l counter surrounding the surface is used to make both a measurement of the energy spectrum of alpha particle emissions and also coincidence measurements to derive the thorium-chain content based on the presence of short-lived isotopes in that decay chain. The fourth method is a radiochemical technique in which the surface is eluted with a weak acid, the eluate is concentrated, added to liquid scintillator and assayed by recording beta-alpha coincidences. These methods were used to characterize two `hotspots on the outer surface of one of the He-3 proportional counters in the Neutral Current Detection array of the Sudbury Neutrino Observatory experiment. The methods have similar sensitivities, of order tens of ng, to both thorium- and uranium-chain contamination.
KATRIN is a very large scale tritium-beta-decay experiment to determine the mass of the neutrino. It is presently under construction at the Forschungszentrum Karlsruhe, and makes use of the Tritium Laboratory built there for the ITER project. The com bination of a very large retarding-potential electrostatic-magnetic spectrometer and an intense gaseous molecular tritium source makes possible a sensitivity to neutrino mass of 0.2 eV, about an order of magnitude below present laboratory limits. The measurement is kinematic and independent of whether the neutrino is Dirac or Majorana. The status of the project is summarized briefly in this report.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا