ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific quadrature rule, to perform fast and accurate likelihood evaluations. These are the dominant cost in Markov chain Monte Carlo (MCMC) algorithms, which are widely employed in parameter estimation studies, and so ROQs offer a new way to accelerate GW parameter estimation. We illustrate our approach using a four dimensional GW burst model embedded in noise. We build an ROQ for this model, and perform four dimensional MCMC searches with both the standard and ROQs quadrature rules, showing that, for this model, the ROQ approach is around 25 times faster than the standard approach with essentially no loss of accuracy. The speed-up from using ROQs is expected to increase for more complex GW signal models and therefore has significant potential to accelerate parameter estimation of GW sources such as compact binary coalescences.
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.
Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive black hole (MBH). Since EMRI signals are expected to be long lasting (containing of the order of hundred thousand cycles), they will encode the structure of the MBH gravitational potential in a precise way such that features depending on the theory of gravity governing the system may be distinguished. That is, EMRI signals may be used to test gravity and the geometry of black holes. However, the development of a practical methodology for computing the generation and propagation of GWs from EMRIs in theories of gravity different than General Relativity (GR) has only recently begun. In this paper, we present a parameter estimation study of EMRIs in a particular modification of GR, which is described by a four-dimensional Chern-Simons (CS) gravitational term. We focus on determining to what extent a space-based GW observatory like LISA could distinguish between GR and CS gravity through the detection of GWs from EMRIs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا