ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the electronic structure of the perovskite oxide CaCrO3 using valence-band, core-level, and Cr 2p - 3d resonant photoemission spectroscopy (PES). Despite its antiferromagnetic order, a clear Fermi edge characteristic of a metal with domi nant Cr 3d character is observed in the valence band spectrum. The Cr 3d single particle density of states are spread over 2 eV, with the photoemission spectral weight distributed in two peaks centered at ~ 1.2 eV and 0.2 eV below EF, suggestive of the coherent and incoherent states resulting from strong electron-electron correlations. Resonant PES across the Cr 2p - 3d threshold identifies a two-hole correlation satellite and yields an on-site Coulomb energy U ~4.8 eV. The metallic DOS at EF is also reflected through the presence of a well-screened feature at low binding energy side of the Cr 2p core-level spectrum. X-ray absorption spectroscopy (XAS) at Cr L3,2 and O K edges exhibit small temperature dependent changes that point towards a small change in Cr-O hybridization. The multiplet splitting in Cr 2p core level spectrum as well as the spectral shape of the Cr XAS can be reproduced using cluster model calculations which favour a negative value for charge transfer energy between the Cr 3d and O 2p states. The overall results indicate that CaCrO3 is a strongly hybridized antiferromagnetic metal, lying in the regime intermediate to Mott-Hubbard and charge-transfer systems.
We investigate the electronic structure of Chromium Nitride (CrN) across the first-order magneto-structural transition at T_N ~ 286 K. Resonant photoemission spectroscopy shows a gap in the 3d partial density of states at the Fermi level and an On-si te Coulomb energy U ~ 4.5 eV, indicating strong electron-electron correlations. Bulk-sensitive high resolution (6 meV) laser photoemission reveals a clear Fermi edge indicating an antiferromagnetic metal below T_N. Hard x-ray Cr 2p core-level spectra show T-dependent changes across T_N which originate from screening due to coherent states as substantiated by cluster model calculations using the experimentally observed U. The electrical resistivity confirms an insulator above T_N (E_g ~ 70 meV) which becomes a disordered metal below T_N. The results indicate CrN transforms from a correlated insulator to an antiferromagnetic metal, coupled to the magneto-structural transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا