ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of O(alpha_t*alpha_s) and O(alpha*alpha_s), i.e., all two-loop c orrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the DRbar renormalization scheme or a mixed OS-DRbar scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-DRbar scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the LHC.
Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. We explore the phenomenology of a mini-split scenario with gaugino masses determined by anomaly mediation. Depending on the value of the higgsino mass, the theory predicts a variety of novel possibilities for the dark-matter particle.
We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-product ion cross section in six benchmark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources of theoretical uncertainty in our calculation. We examine the dependence of the cross section on the renormalization and factorization scales, on the precise definition of the Higgs-bottom coupling and on the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge of the SUSY contributions through NNLO. In particular, a potentially large uncertainty originates from uncomputed higher-order QCD corrections to the bottom-quark contributions to gluon fusion.
We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section.
We perform a comprehensive analysis of the Minimal Supersymmetric Standard Model (MSSM) in the scenario where the scalar partners of the fermions and the Higgs particles (except for the Standard-Model-like one) are assumed to be very heavy and are re moved from the low-energy spectrum. We first summarize our determination of the mass spectrum, in which we include the one-loop radiative corrections and resum to all orders the leading logarithms of the large scalar masses, and describe the implementation of these features in the FORTRAN code SuSpect which calculates the masses and couplings of the MSSM particles. We then study in detail the phenomenology of the model in scenarios where the gaugino mass parameters are non-universal at the GUT scale, which leads to very interesting features that are not present in the widely studied case of universal gaugino mass parameters. We discuss the constraints from collider searches and high-precision measurements, the cosmological constraints on the relic abundance of the neutralino candidate for the Dark Matter in the Universe - where new and interesting channels for neutralino annihilation appear - and the gluino lifetime. We then analyze, in the case of non-universal gaugino masses, the decays of the Higgs boson (in particular decays into and contributions of SUSY particles), of charginos and neutralinos (in particular decays into Higgs bosons and photons) and of gluinos, and highlight the differences from the case of universal gaugino masses.
We present the fortran code SusyBSG version 1.1, which computes the branching ratio for the decay B -> Xs gamma in the MSSM with Minimal Flavor Violation. The computation takes into account all the available NLO contributions, including the complete supersymmetric QCD corrections to the Wilson coefficients of the magnetic and chromomagnetic operators.
75 - G. Degrassi , P. Slavich 2010
We present explicit analytic results for the two-loop top/stop/gluino contributions to the cross section for the production of CP-even Higgs bosons via gluon fusion in the MSSM, under the approximation of neglecting the Higgs boson mass with respect to the masses of the particles circulating in the loops. The results are obtained employing the low-energy theorem for Higgs interactions adapted to the case of particle mixing. We discuss the validity of the approximation used by computing the first-order correction in an expansion in powers of the Higgs boson mass. We find that, for the lightest CP-even Higgs boson, the gluino contribution is very well approximated by the result obtained in the limit of vanishing Higgs mass. As a byproduct of our calculation, we provide results for the two-loop QCD contributions to the photonic Higgs decay.
We study squark flavour violation in the anomaly mediated supersymmetry broken (AMSB) minimal supersymmetric standard model. Analytical expressions for the three-generational squark mass matrices are derived. We show that the anomaly-induced soft bre aking terms have a decreasing amount of squark flavour violation when running from the GUT to the weak scale. Taking into account inter-generational squark mixing, we work out non-trivial constraints from B -> Xs gamma and Bs -> mu mu, which complement each other, as well as B -> tau nu decays. We further identify a region of parameter space where the anomalous magnetic moment of the muon and the B -> Xs gamma branching ratio are simultaneously accommodated. Since anomaly mediation is of the minimal flavour-violating type, the generic flavour predictions for this class of models apply, including a CKM-induced (and hence small) Bs-Bsbar-mixing phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا