ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we propose a new protocol to achieve coherent population transfer between two states in a three-level atom by using two ac fields. It is based on the physics of Stimulated Raman Adiabatic Passage (STIRAP), but it is implemented with the constraint of a reduced control, namely one of the fields cannot be switched off. A combination of frequency chirps is used with resonant fields, allowing to achieve approximate destructive interference, despite of the fact that an exact dark state does not exist. This new chirped STIRAP protocol is tailored for applications to artificial atoms, where architectures with several elementary units can be strongly coupled but where the possibility of switching on and off such couplings is often very limited. Demonstration of this protocol would be a benchmark for the implementation of a class of multilevel advanced control procedures for quantum computation and microwave quantum photonics in artificial atoms.
The implementation of a three-level Lambda System in artificial atoms would allow to perform advanced control tasks typical of quantum optics in the solid state realm, with photons in the $mathrm{mu m}$/mm range. However hardware constraints put an o bstacle since protection from decoherence is often conflicting with efficient coupling to external fields. We address the problem of performing conventional STImulated Raman Adiabatic Passage (STIRAP) in the presence of low-frequency noise. We propose two strategies to defeat decoherence, based on optimal symmetry breaking and dynamical decoupling. We suggest how to apply to the different implementations of superconducting artificial atoms, stressing the key role of non-Markovianity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا