ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high spatial resolution 21cm HI observations of EA01A and EA01B, a pair of interacting post-starburst, or E+A, galaxies at z = 0.0746. Based on optical HST/WFPC2 images, both galaxies are known to display disturbed morphologies. They also appear to be linked by a bridge of stars. Previous HI observations Chang et al. (2001) had already uncovered sizable quantities of neutral gas in or near these galaxies but they lacked the spatial resolution to locate the gas with any precision within this galactic binary system. We have analysed deep, high resolution archival VLA observations of the couple. We find evidence for three gaseous tidal tails; one connected to EA01A and two emanating from EA01B. These findings confirm, independently from the optical imaging, that (i) EA01A and EA01B are actively interacting, and that, as a consequence, the starbursts that occurred in these galaxies were most likely triggered by this interaction, and that (ii) 6.6+-0.9 10^9 Msun of neutral gas are still present in the immediate vicinity of the optical bodies of both galaxies. The HI column density is lowest at the optical positions of the galaxies, suggesting that most of the neutral gas that is visible in our maps is associated with the tidal arms and not with the galaxies themselves. This might provide an explanation for the apparent lack of ongoing star formation in these galaxies.
The presence of black holes (BHs) at the centers of dwarf elliptical galaxies (dEs) has been argued both theoretically and observationally. Using archival HST/WFPC2 data, we found the Virgo cluster dwarf elliptical galaxy VCC128 to harbor a binary nu cleus, a feature that is usually interpreted as the observable signature of a stellar disk orbiting a central massive black hole. Debattista et al. 2006 estimated its mass M sim 6 10^6 - 5 10^7 Msun. One of the most robust means of verifying the existence of a BH is radio continuum and/or X-ray emission, however because of the deficiency of gas in dEs, radio continuum emission forms the best option here. We have tried to detect the X-band radio emission coming from the putative black hole in VCC128 when it accretes gas from the surrounding ISM. While we made a positive 4 sigma detection of a point source 4.63 south-west of the binary nucleus, no statistically significant evidence for emission associated with the nuclei themselves was detected. This implies either that VCC128 has no massive central black hole, which makes the nature of the binary nucleus hard to explain, or, if it has a central black hole, that the physical conditions of the ISM (predominantly its density and temperature) and/or of the surrounding accretion disk do not allow for efficient gas accretion onto the black hole, making the quiescent black hole very hard to detect at radio wavelengths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا